• 제목/요약/키워드: Geometric computer vision

검색결과 68건 처리시간 0.02초

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

컴퓨터 시각과 레이저 구조광을 이용한 물체의 3차원 정보 추출 (Three Dimensional Geometric Feature Detection Using Computer Vision System and Laser Structured Light)

  • 황헌;장영창;임동혁
    • Journal of Biosystems Engineering
    • /
    • 제23권4호
    • /
    • pp.381-390
    • /
    • 1998
  • An algorithm to extract the 3-D geometric information of a static object was developed using a set of 2-D computer vision system and a laser structured lighting device. As a structured light pattern, multi-parallel lines were used in the study. The proposed algorithm was composed of three stages. The camera calibration, which determined a coordinate transformation between the image plane and the real 3-D world, was performed using known 6 pairs of points at the first stage. Then, utilizing the shifting phenomena of the projected laser beam on an object, the height of the object was computed at the second stage. Finally, using the height information of the 2-D image point, the corresponding 3-D information was computed using results of the camera calibration. For arbitrary geometric objects, the maximum error of the extracted 3-D feature using the proposed algorithm was less than 1~2mm. The results showed that the proposed algorithm was accurate for 3-D geometric feature detection of an object.

  • PDF

사각형 복원을 위한 새로운 기하학적 도구로서의 선분 카메라 쌍 (Coupled Line Cameras as a New Geometric Tool for Quadrilateral Reconstruction)

  • 이주행
    • 한국CDE학회논문집
    • /
    • 제20권4호
    • /
    • pp.357-366
    • /
    • 2015
  • We review recent research results on coupled line cameras (CLC) as a new geometric tool to reconstruct a scene quadrilateral from image quadrilaterals. Coupled line cameras were first developed as a camera calibration tool based on geometric insight on the perspective projection of a scene rectangle to an image plane. Since CLC comprehensively describes the relevant projective structure in a single image with a set of simple algebraic equations, it is also useful as a geometric reconstruction tool, which is an important topic in 3D computer vision. In this paper we first introduce fundamentals of CLC with reals examples. Then, we cover the related works to optimize the initial solution, to extend for the general quadrilaterals, and to apply for cuboidal reconstruction.

랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성 (3D geometric model generation based on a stereo vision system using random pattern projection)

  • 나상욱;손정수;박형준
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF

컴퓨터 시각에 의한 잎담배의 외형 및 색 특징 추출 (Extraction of Geometric and Color Features in the Tobacco-leaf by Computer Vision)

  • 조한근;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제19권4호
    • /
    • pp.380-396
    • /
    • 1994
  • A personal computer based color machine vision system with video camera and fluorescent lighting system was used to generate images of stationary tobacco leaves. Image processing algorithms were developed to extract both the geometric and the color features of tobacco leaves. Geometric features include area, perimeter, centroid, roundness and complex ratio. Color calibration scheme was developed to convert measured pixel values to the standard color unit using both statistics and artificial neural network algorithm. Improved back propagation algorithm showed less sum of square errors than multiple linear regression. Color features provide not only quality evaluation quantities but the accurate color measurement. Those quality features would be useful in grading tobacco automatically. This system would also be useful in measuring visual features of other agricultural products.

  • PDF

베이지어 곡선을 이용한 이산 곡률 계산법 (Discrete curvature estimation using a Bezier curve)

  • 김형석
    • 컴퓨터교육학회논문지
    • /
    • 제9권1호
    • /
    • pp.89-95
    • /
    • 2006
  • 컴퓨터그래픽스에서 다루어지는 3차원 물체들에 대한 곡률과 같은 기하학적 특성들은 메쉬의 모양을 해석함에 있어 매우 중요한 역할을 한다. 부드러운 곡면에서 정의되는 곡률은 메쉬와 같은 이산적 형태에서는 수학적으로 정의할 수 없다. 그러므로 이러한 이산곡률을 어떻게 정의하느냐에 따라 기하학적 연산들의 결과는 많은 영향을 받는다. 본 논문에서는 기존의 곡률 계산법에서 사용하고 있는 단면곡률 계산법의 오류를 지적하고 이에 대한 해결책으로 베이지어 곡선을 이용한 포물선-기반 이산 곡률 계산법을 제시한다. 제안된 방법을 통하면 보다 뾰족한 형태의 정점과 완만한 형태의 정점을 구분할 수 있어서 메쉬 간략화와 같은 기하학적 연산에 쉽게 적용가능하다.

  • PDF

컴퓨터 비젼을 이용한 원기둥형 물체의 3차원 측정 (3-Dimensional Measurement of the Cylindrical Object Using Computer Vision)

  • 장택준;주기세;한민홍
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.38-44
    • /
    • 1995
  • This paper presents a method to measure the position and orientation of a Cylindrical Object(unknown the eiameter and length) lying on a floor, using a camera. The two extreme cross section of the cylinder will be viewed as distorted ellipese or circular are, while its limb edge will be shown as two straight lines. The diameter of the cylinder is determined from the geometric properties of the two straight lines, which in turn provides information regarding the length of the cylinder. From the 3-dimensional measurement, the 3D coordinates of the center points of the two extreme cross sections are determined to give the position and orientation of the cylinder. This method is used for automated pick-and-place operations of cylinder, such as sheet coils, or drums in warehouses.

  • PDF

Reverse Engineering of Compound Surfaces Using Boundary Detection Method

  • Cho, Myeong-Woo;Seo, Tae-Il;Kim, Jae-Doc;Kwon, Oh-Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1104-1113
    • /
    • 2000
  • This paper proposes an efficient reverse engineering technique for compound surfaces using a boundary detection method. This approach consists in extracting geometric edge information using a vision system, which can be used in order to drastically reduce geometric errors in the vicinity of compound surface boundaries. Through the image-processing technique and the interpolation process, boundaries are reconstructed by either analytic curves (e. g. circle, ellipse, line) or parametric curves (B-spline curve). In other regions, except boundaries, geometric data are acquired on CMM as points inspected using a touch type probe, and then they are interpolated on several surfaces using a B-spline skinning method. Finally, the boundary edge and the skinned surfaces are combined to reconstruct the final compound surface. Through simulations and experimental works, the effectiveness of the proposed method is confirmed.

  • PDF

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권2호
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

A Vision-Based Method to Find Fingertips in a Closed Hand

  • Chaudhary, Ankit;Vatwani, Kapil;Agrawal, Tushar;Raheja, J.L.
    • Journal of Information Processing Systems
    • /
    • 제8권3호
    • /
    • pp.399-408
    • /
    • 2012
  • Hand gesture recognition is an important area of research in the field of Human Computer Interaction (HCI). The geometric attributes of the hand play an important role in hand shape reconstruction and gesture recognition. That said, fingertips are one of the important attributes for the detection of hand gestures and can provide valuable information from hand images. Many methods are available in scientific literature for fingertips detection with an open hand but very poor results are available for fingertips detection when the hand is closed. This paper presents a new method for the detection of fingertips in a closed hand using the corner detection method and an advanced edge detection algorithm. It is important to note that the skin color segmentation methodology did not work for fingertips detection in a closed hand. Thus the proposed method applied Gabor filter techniques for the detection of edges and then applied the corner detection algorithm for the detection of fingertips through the edges. To check the accuracy of the method, this method was tested on a vast number of images taken with a webcam. The method resulted in a higher accuracy rate of detections from the images. The method was further implemented on video for testing its validity on real time image capturing. These closed hand fingertips detection would help in controlling an electro-mechanical robotic hand via hand gesture in a natural way.