• Title/Summary/Keyword: Geometric calibration

Search Result 180, Processing Time 0.029 seconds

Assessment of LCD Color Display Performance Based on AAPM TG 18 Protocol : Decision of Quality Control and Calibration Period (판독용 LCD 컬러 모니터 장치의 성능 평가 - 성능 평가 및 Calibration 주기 결정을 중심으로 -)

  • Lee, Won-Hong;Son, Soon-Yong;Noh, Sung-Soon;Lee, In-Hwa;Kang, Sung-Ho;Lee, Yong-Moon;Park, Jae-Soo;Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2008
  • Purpose: This study is to decide a quality control and calibration period of LCD display devices used for reading diagnostic images. Materias and Methods: The assessment test of 20 flat panel LCD color display devices used for reading diagnostic images were performed based on AAPM TG 18 protocol over the total six sessions at one month intervals from three months after primary calibration, in terms of geometric distortion, reflection test, luminance response evaluation, luminance uniformity, resolution, noise, veiling glare and chromaticity test. Results: The results of geometric distortion, reflection test, luminance uniformity, resolution, noise, veiling glare and chromaticity test were within the criteria recommended by AAPM TG 18, except for luminance response evaluation. In the measured luminance deviation of luminance response evaluation, 4(25%) of 20 display devices were passed a criterion from four months after calibration, and 11 (55%) were passed from eight months. Also in the contrast response of the luminance response evaluation, 1(5%) display device was passed a criterion from four months after calibration, and 3(15%) were passed from eight months. Conclusion: Considering the passing deviation after calibration, the time required and a manpower, the quality control and calibration period of LCD display devices used for reading diagnostic images should be a three months and six months after calibration.

  • PDF

Combined Static and Dynamic Platform Calibration for an Aerial Multi-Camera System

  • Cui, Hong-Xia;Liu, Jia-Qi;Su, Guo-Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2689-2708
    • /
    • 2016
  • Multi-camera systems which integrate two or more low-cost digital cameras are adopted to reach higher ground coverage and improve the base-height ratio in low altitude remote sensing. To guarantee accurate multi-camera integration, the geometric relationship among cameras must be determined through platform calibration techniques. This paper proposed a combined two-step platform calibration method. In the first step, the static platform calibration was conducted based on the stable relative orientation constraint and convergent conditions among cameras in static environments. In the second step, a dynamic platform self-calibration approach was proposed based on not only tie points but also straight lines in order to correct the small change of the relative relationship among cameras during dynamic flight. Experiments based on the proposed two-step platform calibration method were carried out with terrestrial and aerial images from a multi-camera system combined with four consumer-grade digital cameras onboard an unmanned aerial vehicle. The experimental results have shown that the proposed platform calibration approach is able to compensate the varied relative relationship during flight, acquiring the mosaicing accuracy of virtual images smaller than 0.5pixel. The proposed approach can be extended for calibrating other low-cost multi-camera system without rigorously mechanical structure.

Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Center Using Hemispherical Helix Ball Bar Test (반구상의 나선형 볼바측정을 통한 수직형 머시닝 센터의 오차 해석 및 보정)

  • Yang, Seung-Han;Kim, Ki-Hoon;Park, YongKuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.34-40
    • /
    • 2002
  • Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.

3D geometric model generation based on a stereo vision system using random pattern projection (랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성)

  • Na, Sang-Wook;Son, Jeong-Soo;Park, Hyung-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF

Geometric Formulation of Rectangle Based Relative Localization of Mobile Robot (이동 로봇의 상대적 위치 추정을 위한 직사각형 기반의 기하학적 방법)

  • Lee, Joo-Haeng;Lee, Jaeyeon;Lee, Ahyun;Kim, Jaehong
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • A rectangle-based relative localization method is proposed for a mobile robot based on a novel geometric formulation. In an artificial environment where a mobile robot navigates, rectangular shapes are ubiquitous. When a scene rectangle is captured using a camera attached to a mobile robot, localization can be performed and described in the relative coordinates of the scene rectangle. Especially, our method works with a single image for a scene rectangle whose aspect ratio is not known. Moreover, a camera calibration is unnecessary with an assumption of the pinhole camera model. The proposed method is largely based on the theory of coupled line cameras (CLC), which provides a basis for efficient computation with analytic solutions and intuitive geometric interpretation. We introduce the fundamentals of CLC and describe the proposed method with some experimental results in simulation environment.

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF