• Title/Summary/Keyword: Geometric asymmetric

Search Result 57, Processing Time 0.2 seconds

The Analysis of Stress Behavior in welded interface and interface crack of High Frequency Pressure welding of Dissimilar materials for Fin-Tube (Fin-Tube 이종재의 고주파 압접 접합계면 및 계면균열 응력해석)

  • 김도형;이동진;오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.380-385
    • /
    • 2000
  • In this study, geometric shape and crack in welded interface of the air cooled heat exchanger Fin-Tube of Dissimilar Meterials was analysed. The object of study is to understand the behavior of Stress Intensity Factor for fin length, flash thickness, flash length, symmetric and asymmetric cracks of comming from the manufacturing process. Stress Intensity Factor was analysed by BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD (유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF

Study on Analysis of Optical Deflection of Laser Scattering Based on Rayleigh Criterion for Crystalline Silicon Wafer in Solar Cell (태양전지용 결정질 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란의 광편향 분석에 관한 연구)

  • Kim, Gyung-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, optical deflection of laser scattering has been investigated based on Rayleigh criterion for crystalline silicon wafer in solar cell. A laser scattering mechanism is newly designed using light scattering properties in silicon wafer. Intensity distributions of laser scattering are different, depending on the incident angle of laser computed from Rayleigh criterion. In case of the incident angle satisfied with the criterion, they are asymmetric. Also, their specular reflection angle is shifted to unpredicted ones. These phenomena are in accordance with previous theories of laser scattering. The optical deflection of laser scattering is experimentally identified with the designed laser scattering mechanism. Its mathematical model is presented from the geometric relationship of laser scattering. It is shown that the optical deflection of laser scattering agree with the presented model, exclusive of grazing angles which is satisfied with Rayleigh criterion.

Dynamic stability of a viscoelastically supported sandwich beam

  • Ghosh, Ranajay;Dharmavaram, Sanjay;Ray, Kumar;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.503-517
    • /
    • 2005
  • The parametric dynamic stability of an asymmetric sandwich beam with viscoelastic core on viscoelastic supports at the ends and subjected to an axial pulsating load is investigated. A set of Hill's equations are obtained from the non-dimensional equations of motion by the application of the general Galerkin method. The zones of parametric instability are obtained using Saito-Otomi conditions. The effects of shear parameter, support characteristics, various geometric parameters and excitation force on the zones of instability are investigated.

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Dynamic model of hinge deflection in fluid flow (유동 내 굽힘이 발생하는 힌지의 역학 모델)

  • Minho Song;Janggon Yoo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2023
  • For application to drag-based propulsion system, the dynamics of a segmented structure with multiple hinges undergoing oscillatory motion are investigated. The side flaps are connected to a centre rod with elastic plates acting as hinges. The hinges bend to only one direction so that the structure behave asymmetrically between the power stroke and the recovery stroke. An analytical model is proposed, which estimates the asymmetric deformation of the segmented structure coupled with hinges. Using the proposed model, the effects of key geometric and kinematic parameters on the dynamics of the structure are analyzed.

Stress interactions between two asymmetric noncircular tunnels

  • La, You-Sung;Kim, Bumjoo;Jang, Yeon-Soo;Choi, Won-Hyuk
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.869-877
    • /
    • 2018
  • The continually growing demand for underground space in dense urban cities is also driving the demand for underground highways. Building the underground highway tunnel, however, can involve complex design and construction considerations, particularly when there exists divergence or convergence in the tunnel. In this study, interaction between two asymmetric noncircular tunnels-that is, a larger main tunnel and a smaller tunnel diverging from the main tunnel, was investigated by examining the distributions of the principal stresses and the strength/stress ratio for varying geometric conditions between the two tunnels depending on diverging conditions using both numerical analysis and scale model test. The results of numerical analysis indicated that for the $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ diverging directions, the major principal stress showed an initial gradual decrease and then a little steeper increase with the increased distance from the left main tunnel, except for $90^{\circ}$ where a continuous drop occurred, whereas the minor principal stress exhibited an opposite trend with the major principal stresses. The strength/stress ratio showed generally a bell-shaped but little skewed to left distribution over the distance increased from the left larger tunnel, similarly to the variation of the minor principal stress. For the inter-tunnel distance less than 0.5D, the lowest strength/stress ratio values were shown to be below 1.0 for all diverging directions ($0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$). The failure patterns observed from the model test were found to be reasonably consistent with the results of numerical analysis.

Study on Section Properties of Asymmetric-Sectioned Vessels (선박의 비대칭 단면 특성에 대한 연구)

  • Choung, Joon-Mo;Kim, Young-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

Restoring Turbulent Images Based on an Adaptive Feature-fusion Multi-input-Multi-output Dense U-shaped Network

  • Haiqiang Qian;Leihong Zhang;Dawei Zhang;Kaimin Wang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 2024
  • In medium- and long-range optical imaging systems, atmospheric turbulence causes blurring and distortion of images, resulting in loss of image information. An image-restoration method based on an adaptive feature-fusion multi-input-multi-output (MIMO) dense U-shaped network (Unet) is proposed, to restore a single image degraded by atmospheric turbulence. The network's model is based on the MIMO-Unet framework and incorporates patch-embedding shallow-convolution modules. These modules help in extracting shallow features of images and facilitate the processing of the multi-input dense encoding modules that follow. The combination of these modules improves the model's ability to analyze and extract features effectively. An asymmetric feature-fusion module is utilized to combine encoded features at varying scales, facilitating the feature reconstruction of the subsequent multi-output decoding modules for restoration of turbulence-degraded images. Based on experimental results, the adaptive feature-fusion MIMO dense U-shaped network outperforms traditional restoration methods, CMFNet network models, and standard MIMO-Unet network models, in terms of image-quality restoration. It effectively minimizes geometric deformation and blurring of images.