• Title/Summary/Keyword: Geometric Tube Design

Search Result 37, Processing Time 0.039 seconds

Optimal Design of Compact Heat Exchanger (Louver Fin-tube Heat Exchanger for High Heat Transfer and Low Pressure Drop)

  • Kang, Hie-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.891-898
    • /
    • 2011
  • The present work was conducted to get the best geometric information for the optimum design of the complex heat exchanger. The objective function for optimal design was expressed as a combination of pressure drop and heat transfer rate. The geometric parameters for the variables of louver pitch and height, tube width, etc., were limited to ranges set by manufacturing conditions. The optimum geometric parameters were calculated by using empirical correlations and theory. The sensitivity of the parameters and optimum values are shown and discussed. The weighting factor in the objective function is important in the selection of the louver fin-tube heat exchanger.

Introduction to Archimedean Horizontal Stars on Geometric Tube Design (기하학적 튜브디자인과 아르키메데스 수평별 입문)

  • Hwang, Hongtaek
    • Communications of Mathematical Education
    • /
    • v.29 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • We have announced a series of Archimedean stars on the mathematical art galleries of Bridges conference since 2012. We are developing a systematic approach and methodology about the composition process of Archimedean stars on geometric tube design. We will introduce the various information about the Archimedean horizontal stars under certain introductory level as well as the underlying information of Archimedean stars to provide them as useful sources for certain creative experimental mathematics education.

Shape Optimization of S-tube for Heat Exchanger Used in High Temperature Environment Using FE Analysis and DOE (유한요소법과 실험계획법을 이용한 고온 열교환기용 S-관의 형상 최적화)

  • Jeong, Ho-Seung;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.497-503
    • /
    • 2012
  • The aim of this study was to optimize S-tube shape of heat exchanger in term of reducing the size of tube bundle and improving the mechanical properties such as the thermal stress and resonance. The geometric parameters such as offset length, the straight distance between one end and other end of tube, the tube length in straight portion and fillet radius was assessed as a valid parameters. The structural analysis was performed to estimate the structural characteristics. Main effect analysis was performed to investigate the main effect for the various geometric parameters. The response surface methodology was employed to establish mathematical approximation models as a function of the geometric parameters of the S-tube. Also, The optimization was performed to optimize geometric parameters of S-tube using the regression equations and optimization tool. The optimized tube shape has been proposed. Those could be used in the heat exchanger design used in high temperature.

Performance Analysis with Change in Design Parameters of $CO_2$ Heat Pump Gas Cooler ($CO_2$ 히트펌프 가스쿨러의 설계변수 변화에 따른 성능해석)

  • Chang, Young-Soo;Kim, Min-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.639-644
    • /
    • 2006
  • The outlet temperature of gas cooler has a great effect on the efficiency of carbon dioxide heat pump system. In order to obtain a small approach temperature difference at gas cooler, near-counter flow type heat exchanger has been proposed, and larger heat transfer area is demanded. The optimum design of gas cooler involving the analysis of trade-offs between heat transfer performance and cost is desirable. In this study, the effects of geometric parameters, such as the circuit arrangement, tube diameter, transverse tube spacing, longitudinal tube spacing and the number of tube rows and fin spacing on the performance of heat transfer were investigated using the developed model. This study suggested various simulation results for optimum designs of gas cooler.

  • PDF

Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis (초고속 원심분리기 복합재 로터의 해석 및 최적설계)

  • 박종권;김영호;하성규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.130-136
    • /
    • 1998
  • A procedure of stress and strength analysis has been proposed for the centrifuge rotor of composite materials of quasi-isotropic laminates. The goal in this study is to maximize the allowable rotating speed, that is, to minimize maximum strength ratio with the given path length by changing the geometric parameter-outer radius and ply angles in quasi-isotropic laminates. Optimum values of the geometric parameter-outer radius and ply angles are obtained by multilevel optimization. All the geometric dimensions and stresses are normalized such that the result can be extended to a general case. Two dimensional analysis at each cross section with an elliptic tube hole subjected to internal hydrostatic pressures by samples as well as the centrifugal body forces has been performed along the height to calculate the stress distribution with the plane stress assumption, and Tsai-Wu failure criterion is used to calculate the strength ratio. The maximum allowable rotating speed can be increased by changing the radii of the outer surface along the height with the maximum strength ratio under the unit value : The optimal number of ply angles maximizing the allowable rotating speed in quasi-isotropic laminates is found to be the half number of tube hole, and the optimal laminate rotation angle is the half of $[{\pi}/m]$. A $[{\pi}/3]$ laminate, for instance, is stronger than a $[{\pi}/4]$ laminate for the centrifuge rotor of 6 tube hole number even though they have the same stiffness.

  • PDF

Grain Geometry, Performance Prediction and Optimization of Slotted Tube Grain for SRM

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.293-300
    • /
    • 2008
  • Efficient designing of SRM Grains in the field of Rocketry is still the main test for most of the nations of world for scientific studies, commercial and military applications. There is a strong need to enhance thrust, improve the effectiveness of SRM and reduce mass of motor and burning time so as to allow the general design to increase the weight of payload/on board electronics. Moreover burning time can be increased while keeping the weight of the propellant and thrust in desired range, so as to give the time to control / general design group in active phase for incorporating delayed cut off if required. A mathematical design, optimization & analysis technique for Slotted Tube Grain has been discussed in this paper. In order to avoid the uncertainties that whether the Slotted Tube grain configuration being designed is best suited for achieving the set design goals and optimal of all the available designs or not, an efficient technique for designing SRM Grain and then getting optimal solution is must. The research work proposed herein addresses and emphasizes a design methodology to design and optimize Slotted Tube Grain considering particular test cases for which the design objectives and constraints have been given. In depth study of the optimized solution have been conducted thereby affects of all the independent parametric design variables on optimal solution & design objectives have been examined and analyzed in detail. In doing so, the design objectives and constraints have been set, geometric parameters of slotted tube grain have been identified, performance prediction parameters have been calculated, thereafter preliminary designs completed and finally optimal design reached. A Software has been developed in MATLAB for designing and optimization of Slotted Tube grains.

  • PDF

Effective number of mega-bracing, in order to minimize shear lag

  • Zahiri-Hashemi, Rouzbeh;Kheyroddin, Ali;Farhadi, Basir
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.173-193
    • /
    • 2013
  • In this paper, influence of geometric configurations of multi-story bracing on shear lag behaviour of braced tube structures is investigated. The shear lag of 24-, 36- and 72-story braced tube structures are assessed considering all possible configurations of overall X and Chevron bracing types. Based on the analytical results, empirical equations, useful for the preliminary design phase, are proposed to provide the optimum number of stories that braced, in order to exert minimum shear lag on structures. Studying the interaction behaviour of a tube and different bracing types along with paying attention to the shear lag behaviour, a better explanation about the reasons behind the efficiency of a specific bracing module in decreasing the shear lag is developed. The analytical results show that there are distinct differences between the anatomy of braced tube structures with X and Chevron bracing regarding the shear lag behaviour.

Performance Analysis of an Indoor Heat Exchanger with R-410A for GHP Application

  • Lee, Jong-Ho;Kim, Sung-Soo;Cha, Woo-Ho;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchangers with R-410A for Gas Engine Driven Heat Pump (GHP) application and to find the optimum design conditions of indoor heat exchangers by parametric analysis for the key parameters. The key parameters are number of tube row, number of tube pipe, fin pitch and transverse tube pitch. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R-410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant. This study determines the heat exchanger size, air side/refrigerant side pressure drop and overall heat transfer coefficient. Optimum design conditions for the key parameters are also determined by the parametric analysis. The results show that number of rows and pipes, fin pitch have significant effect on the heat exchanger size. It is also found that the tube length of the louver fin is $17{\sim}30%$ shorter than that of the plate fin.

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

Theoretical Study of Design Parameters for the Thermal Stress in Engine Exhaust Manifold (엔진 배기매니폴드의 열응력 발생에 관한 설계 인자들의 이론적 연구)

  • Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.

  • PDF