• Title/Summary/Keyword: Geometric Matching

Search Result 204, Processing Time 0.025 seconds

Straightness Measurement Technique for a Machine Tool of Moving Table Type using the Profile Matching Method (이동테이블형 공작기계에서의 형상중첩법을 이용한 진직도 측정기술)

  • 박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.400-407
    • /
    • 1995
  • The straightness property is one of fundamental geometric tolerances to be strictly controlled for guideways of machine tools and measuring machines. The staightness measurement for long guideways was usually difficult to perform, and it needed additional equipments or special treatment with limited application. In this paper, a new approach is proposed using the profile matching technique for the long guideways, which can be applicable to most of straghtness measurements. An edge of relativelly sthort length is located along a divided section of a long guideway, and the local straightness measurement is performed. The edge is then moved to the next section with several positions overlap. After thelocal straightness profile is measured for every section along the long guideway with overlap, the global straightness profile is constructed using the profile matching technique based on theleast squares method. The proposed techinique is numerically tested for two cases of known global straightness profile arc profile and irregular profile and those profiles with and without random error intervention, respectively. When norandom errors are involved, the constructed golval profile is identical to the original profile. When the random errors are involved, the effect of the number of overlap points are investigated, and it is also found that the difference between the difference between the constructed and original profiles is very close to the limit of random uncertainty with juist few overlap points. The developed technique has been practically applied to a vertical milling machine of moving table type, and showed good performance. Thus the accuracy and efficiency of the proposed method are demonstrated, and shows great potential for variety of application for most of straightness measuirement cases using straight edges, laser optics, and angular measurement equipments.

  • PDF

Robust Stereo Matching under Radiometric Change based on Weighted Local Descriptor (광량 변화에 강건한 가중치 국부 기술자 기반의 스테레오 정합)

  • Koo, Jamin;Kim, Yong-Ho;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.164-174
    • /
    • 2015
  • In a real scenario, radiometric change has frequently occurred in the stereo image acquisition process using multiple cameras with geometric characteristics or moving a single camera because it has different camera parameters and illumination change. Conventional stereo matching algorithms have a difficulty in finding correct corresponding points because it is assumed that corresponding pixels have similar color values. In this paper, we present a new method based on the local descriptor reflecting intensity, gradient and texture information. Furthermore, an adaptive weight for local descriptor based on the entropy is applied to estimate correct corresponding points under radiometric variation. The proposed method is tested on Middlebury datasets with radiometric changes, and compared with state-of-the-art algorithms. Experimental result shows that the proposed scheme outperforms other comparison algorithms around 5% less matching error on average.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Coregistration of QuickBird Imagery and Digital Map Using a Modified ICP Algorithm (수정된 ICP알고리즘을 이용한 수치지도와 QuickBird 영상의 보정)

  • Han, Dong-Yeob;Eo, Yang-Dam;Kim, Yong-Hyun;Lee, Kwang-Jae;Kim, Youn-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • For geometric correction of high-resolution images, the authors matched corresponding objects between a large-scale digital map and a QuickBird image to obtain the coefficients of the first order polynomial. Proximity corrections were performed, using the Boolean operation, to perform automated matching accurately. The modified iterative closest point (ICP) algorithm was used between the point data of the surface linear objects and the point data of the edge objects of the image to determine accurate transformation coefficients. As a result of the automated geometric correction for the study site, an accuracy of 1.207 root mean square error (RMSE) per pixel was obtained.

Performance Optimization of LLAH for Tracking Random Dots under Gaussian Noise (가우시안 잡음을 가지는 랜덤 점 추적을 위한 LLAH의 성능 최적화)

  • Park, Hanhoon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • Unlike general texture-based feature description algorithms, Locally Likely Arrangement Hashing (LLAH) algorithm describes a feature based on the geometric relationship between its neighbors. Thus, even in poor-textured scenes or large camera pose changes, it can successfully describe and track features and enables to implement augmented reality. This paper aims to optimize the performance of LLAH algorithm for tracking random dots (= features) with Gaussian noise. For this purpose, images with different number of features and magnitude of Gaussian noise are prepared. Then, the performance of LLAH algorithm according to the conditions: the number of neighbors, the type of geometric invariants, and the distance between features, is analyzed, and the optimal conditions are determined. With the optimal conditions, each feature could be matched and tracked in real-time with a matching rate of more than 80%.

The Geometric Modeling for 3D Information of X-ray Inspection (스테레오 X-선 검색장치를 이용한 3차원 정보 가시화에 관한 연구)

  • Hwang, Young-Gwan;Lee, Seung-Min;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.145-149
    • /
    • 2014
  • In this study, using X-ray cargo container scanning device and to differentiate the concept of three-dimensional information extraction applied for X-ray scanning device as an ingredient in the rotation of the X-Ray Linear Pushbroom Stereo System by introducing the geometric How to model was introduced. Three-dimensional information obtained through the matching of a single voxel space filled with a random vector operations for each voxel in the three dimensional shape reconstruction algorithm using the definition, and in time, the time required for each step were analyzed. Using OpenCV in each step by applying parallelization techniques approximately 1.8 times improvement in the processing time of the check, but do not meet the target within one minute levels. The other hand, X-ray images by the primary process to convert the point View the results of real-time stereo through a three-dimensional could feel the comfort level.

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

3D Non-Rigid Registration for Abdominal PET-CT and MR Images Using Mutual Information and Independent Component Analysis

  • Lee, Hakjae;Chun, Jaehee;Lee, Kisung;Kim, Kyeong Min
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.311-317
    • /
    • 2015
  • The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline. based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

A Study on the Aesthetic Characteristics of Korean Knit Fashion (니트 패션의 미적 특성에 관한 연구 - 패션 잡지에 나타난 국내 니트 디자인을 중심으로 -)

  • Choi, Hae-Joo
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.3
    • /
    • pp.61-71
    • /
    • 2008
  • Knit wear with comfortable feeling of wearing and various coordinations gives new values to the modern people, who seek activities and individualities, and the demand for knit wear is on the rise. This article aims to analyze the aesthetic characteristics of Korean knit fashion. Fashion photographs from leading monthly fashion magazines in Korea from 2005 to 2007 had been analyzed. The knitting techniques, and designing characteristics and aesthetic values of Korean knit fashion had been studied. The major conclusions of the study are the following: 1. Korean knit fashion applies various knitting techniques. The knitting techniques used in Korean knit fashion are hand-knitting technique, crochet techniques, lace techniques, plain stitch, rib stitch, and purl stitch technique. 2. Decorations by trimming and matching with different textile materials are used more frequently than decorations by knit material itself. Decorating methods include fringes, spangle, beads, Rhine stone, motif and embroidery decorating. Matching with different textile materials made contrasting decoration effect. 3. Patterms by knitting structure and by arranging colors are applied. Cubic effect by knitting structure patterns, and geometric patterns by arranging colors are emphasized. 4. The formative feature beauties are natural beauty, feminine beauty, and decorative beauty. Korean knit fashion has developed creative and decorative designs through various knitting techniques and decorating techniques. As individual activities may be increased in the future, the designs and applications of knit fashion may be diversified.

  • PDF

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF