• Title/Summary/Keyword: Geometric Flow

Search Result 596, Processing Time 0.026 seconds

Numerical Analysis of Wave Field in OWC Chamber Using VOF Model

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Recently Oscillating Water Column (OWC) plants have been widely employed in wave energy conversion applications. It is necessary to investigate the chamber and optimize its shape parameters for maximizing air flow and energy conversion due to wave conditions. A 2D numerical wave tank based on a Fluent and VOF model is developed to generate the incident waves and is validated by theoretical solutions. The oscillating water column motion in the chamber predicted by the numerical method is compared with the available experimental data. Several geometric scales of the chamber are calculated to investigate the effect of the shape parameters on the oscillating water column motion and wave energy conversion.

Comparing geometric parameters of a hydrodynamic cavitation process treating pesticide effluent

  • Randhavane, Shrikant B.
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.318-323
    • /
    • 2019
  • Paper focuses on comparison between two different orifice plate configurations (plate number 1 and plate number 2) used as cavitating device in the hydrodynamic cavitation reactor for improving pollutant removal efficiencies. Effect of four different parameters such as hydraulic characteristics (in terms of range of flow rates, orifice velocities, cavitation number at different inlet pressures); cavitation number (in range of 5.76-0.35 for plate number 1 and 1.20-0.35 for plate number 2); inlet pressure (2-8 bars) and reaction time (0 to 60 min) in terms of chemical oxygen demand (COD) removal and chlorpyrifos degradation has been studied and compared. Optimum inlet pressure of 5 bars exists for degradation of pollutants for both the plates. It is found that geometry of orifice plate plays important role in removal efficiencies of pollutant. Results obtained confirmed that orifice plate 1 with configuration of 1.5 mm 17 holes; cavitational number of 1.54 performed better with around 60% COD and 98% chlorpyrifos removal as compared to orifice plate 2 having configuration of 2 mm single hole; cavitational number of 0.53 with 40% COD and 96% chlorpyrifos in 2 h duration time.

Controlled Hydrodynamic Cavitation-assisted Nanoreactor for Less Chemical-Higher Yield in Neutralization of Vegetable Oil Refining Process (Less Chemical-Higher Yield 탈산공정을 위한 수력 공동현상 유도 나노리엑터)

  • Kim, Ji-In
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.114-126
    • /
    • 2018
  • The production of high quality oil to meet new standard needs a 'next generation' innovative oil refining tool in paradigm shift. 'Nanoneutralization' using controlled hydrodynamic cavitation-assisted Nanoreactor is successfully being introduced and commercialized into edible oil industry and it plays a key driver for sustainable development of food processing. This emerging technology using bubble dynamics as a consequence of Bernoulli's principle by hydrodynamic cavitation in Venturi-designed multi-flow through cell is radically changing the conventionally chemical-oriented neutralization. Nanoneutralization derived by the creation of nanometer-sized bubbles formed through scientifically structured geometric channels under high pressure has been proven to improve mass transfer and reaction rate so substantially reduce the chemicals required for refined vegetable oil and to increase oil yield while even improving oil quality. More researches on science behind this revolutionary technology will help usto better understand the principle and process hence makes its potential applications expandable in extraction, refining and modification of fats and oils processing.

A Study on Seawater Flow Characteristics inside the Shrouds used in Tidal Current Generation Systems for Various Geometric Angles under Constant Tidal Current Velocity (조류발전 시스템용 쉬라우드의 형상각도별 일정 조류속도장 내 해수유동 특성연구)

  • Kim, Jong-Won;Lee, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Numerical analyses through Computational Fluid Dynamics have been performed to investigate the seawater flow field characteristics for various shrouds used in horizontal axis tidal current turbine systems. Seawater flow characteristics are largely influenced under constant tidal current velocity by the shroud geometry and there is considerable difference in fluid velocity distributions around the shrouds. Especially the location and magnitude of maximum seawater flow velocity directly affect turbine performance for power generation. For the cylinder-diffuser type shroud system whose cylinder and diffuser parts have the same length accelerated flow region is formed in the overall cylinder part while maximum velocity in the nozzle-diffuser type whose nozzle and diffuser parts have the same length with symmetry, locally appears near the minimum sectional area. In case of cylinder-diffuser type shroud fluid velocity increases rather high compared with current velocity. And fluid velocity at the centerline gradually increases from the entrance, and then decreases rapidly after reaching a peak close to the middle of the cylinder part unlike the nozzle-diffuser while there is not much variation near the rear of the shroud. These results of the seawater flow characteristics with various shroud geometries can be applied to optimal design for the development of efficient tidal current power generation systems.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

A Study on the Determination of$N(NO_2^-),\;N(NO_3^-)$and$N(NH_4^+)$in Environmental Samples by Flow Injection Analysis (흐름주입분석법에 의한 환경시료 중$N(NO_2^-),\;N(NO_3^-)$$N(NH_4^+)$의 정량분석에 관한 연구)

  • Rhee, Jae Seong;Kim, Young Sang;Jung, Yun Hee;Rhee, Hee Jung
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.5
    • /
    • pp.256-265
    • /
    • 1997
  • A rapid and sequential method was studied, which can determine nitrite, nitrate and ammonium ion in soil or water samples with flow injection analysis. Geometric factors including injection volume, length of the reaction coil and flow rate of carrier solution were investigated prior to sample measurement. Nitrite was determined at 540 nm by Griess reaction producing azo dye between N-(1-naphthylethylenediamine dihydrochloride) and sulfanilamide. Nitrate was also measured under the help of reduction mechanism toward nitrite with hydrazine. Ammonium was analyzed at 440 nm with Nessler's reagent. At the optimum condition, the detection limit(S/N=3) has been shown 0.1 ㎍/mL N(NO2-), 0.4 ㎍/mL N(NO3-) and 0.3 ㎍/mL N(NH4+) respectively. The results measured by colorimetry, ion chromatography and FIA were compared showing 80%-125% reasonable match each other. Injection throughput rate could be performed better than 30 times per hour.

  • PDF

Effect Analysis on the Location of Automated Speed Enforcement System in Highway (고속도로 고정식 과속단속시스템 설치위치별 효과분석)

  • Park, Je-Jin;Kim, Joong-Hyo;Park, Tae-Hoon;Ha, Tae-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.1 s.12
    • /
    • pp.27-37
    • /
    • 2007
  • The automatic speed enforcement system is expected to play an important role as intelligent transport system (ITS) or advanced franc management system (ATMS). It must be a reliable system checking the overspeedy vehicles automatically, while savine the police manpower and ensuring a safe traffic flow. In terms of traffic engineering, the automatic speed enforcement system may serve to improve driver's violent behaviors, facilitate the smooth and safe traffic flow and thereby, reduce the traffic accident. This study was aimed at analyzing the accident before and after installation of the automatic speed enforcement systems at the frequency, EPDO(equivalent property damage only) and accident cost, analyzing the effects of the automatic system on the traffic flow and accident. As a result, when we equip the automatic speed enforcement system on the downward slope section or after middle section comparing with whole section. We should consider the location of automatic speed enforcement system.

  • PDF

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.

Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System (열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구)

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.45-52
    • /
    • 1993
  • The benefits of thermal stratification in sensible heat storage were investigated for residential solar applications. The effect of increased thermal useful efficiency of hot water stored in an actual storage tank due to stratification has been discussed and illustrated through experimental data and computer simulation, which were taken by changing dynamic and geometric parameters. When the flow rate was 8 liter/min and ${\Delta}T=40^{\circ}C$ was $40^{\circ}C$, the useful efficiency(${\eta}_u$) was about 90% in case of using a distributor, but not using a distributor the useful efficiency(${\eta}_u$) was about 82%. So these kinds of distributor would be recommendable for a hot water storage system and residential solar energy application to increase useful efficiency(${\eta}_u$). In the case of the uniform circular distributor, when the flow rate was 8 liter/min partial mixing was decreased and a stable stratification was obtained. Furthermore, if the distrbutor was manufactured so that the flow is to be the same from all perforations in order to enhance stratification, it might be predicted that further stable stratification and higher useful efficiency(${\eta}_u$) are obtainable.

  • PDF