• Title/Summary/Keyword: Geometric Derivation

Search Result 37, Processing Time 0.037 seconds

A Geometric Derivation of the Craig Representation for the Two-Dimensional Gaussian Q-Function (이변량 가우시안 Q-함수의 Craig 표현에 대한 기하학적인 유도)

  • Park, Seung-Keun;Lee, Il-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.325-328
    • /
    • 2011
  • In this paper, we present a new and simple derivation of the Craig representation for the two-dimensional (2-D) Gaussian Q-function in the viewpoint of geometry. The geometric derivation also leads to an alternative Craig form for the 2-D Gaussian Q-function. The derived Craig form is newly obtained from the geometry of two wedge-shaped regions generated by the rotation of Cartesian coordinates over two correlated Gaussian noises. The presented Craig form can play a important role in computing the probability represented by the 2-D Gaussian Q-function.

CBAbench: An AutoCAD-based Dynamic Geometric Constraint System

  • Gong, Xiong;Wang, Bo-Xing;Chen, Li-Ping
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.173-181
    • /
    • 2006
  • In this paper, an integration framework of Geometric Constraint Solving Engine and AutoCAD is presented, and a dynamic geometric constraint system is introduced. According to inherent orientation features of geometric entities and various Object Snap results of AutoCAD, the' proposed system can automatically construct an under-constrained geometric constraint model during interactive drawing. And then the directed constraint graph in a geometric constraint model is realtime modified in order to produce an optimal constraint solving sequence. Due to the open object-oriented characteristics of AutoCAD, a set of user-defined entities including basic geometric elements and graphics constraint relations are defined through derivation. And the custom-made Object Reactor and Command Reactor are also constructed. Several powerful characteristics are achieved based on these user-defined entities and reactors, including synchronously processing geometric constraint information while saving and opening DWG files, visual constraint relations, and full adaptability to Undo/Redo operations. These characteristics of the proposed system can help the designers more easily manage geometric entities and constraint relations between them.

Geometric Nonlinear Analysis Formulation for Spatial Frames using Stability Functions (Stability Function을 이용한 공간 뼈대구조물의 기하학적 비선형해석 포뮬레이션)

  • 윤영묵;박준우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.201-207
    • /
    • 1998
  • In this study, a geometric nonlinear analysis formulation for spatial frames is developed using the 3D stability functions. For the formulation, the relationships of local and global coordinate systems in force, deformation, and the initial and current configurations of a frame are derived. The force-deformation relationship in global coordinate system is derived as well. The developed formulation is verified in each derivation by reducing the derived equations into 2D equations. The gradual plastification of connections and critical sections can be implemented effectively to this formulation for the complete second order inelastic advanced analysis of spatial frames.

  • PDF

ELS FTF algorithm fot ARMA spectral estimation (ARMA스펙트럼 추정을 위한 ELS FTF 알고리즘)

  • 이철희;장영수;남현도;양홍석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.427-430
    • /
    • 1989
  • For on-line ARMA spectral estimation, the fast transversal filter algorithm of extended least squares method(ETS FTF) is presented. The projection operator, a key tool for geometric approach, is used in the derivation of the algorithm. ELS FTF is a fast time update recursion which is based on the fact that the correlation matrix of ARMA model satisfies the shift invariance property in each block, and thus it takes 10N+31 MADPR.

  • PDF

A STUDY ON THE RECURRENCE RELATIONS AND VECTORS Xλ, Sλ AND Uλ IN g - ESXn

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 2010
  • The manifold $g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $g_{{\lambda}{\mu}}$ through the ES-connection which is both Einstein and semi-symmetric. In this paper, we investigate the properties of the vectors $X_{\lambda}$, $S_{\lambda}$ and $U_{\lambda}$ of $g-ESX_n$, with main emphasis on the derivation of several useful generalized identities involving it.

Automatic Derivation of Explicit Robot Programs from Task-Level Commands (고수준 명령어로부터 명시적 로봇 프로그램 자동 유도방법)

  • Seo, Yoon-Ho;Cheong, Deok-Ho
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.305-311
    • /
    • 1999
  • Robot task program is needed to control and manage a Robot without explicitly describing the robot program by user which includes commands, procedures, geometric and signal data in the detail level. To use the Robot task program, a computer system is required to convert the Robot task into the Robot program, which can be understood by the Robot. In this paper, the systemic method for automatic generation of explicit Robot programs (ERP) from task-level commands is described. Specifically, a 3-step procedure including Robot task decomposition, task synchronization and ERP generation is presented.

  • PDF

Geometry of Wire-wounded Bulk Kagome Structure (와이어 직조 카고메의 기하학)

  • Kim, Heon-Soo;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1410-1415
    • /
    • 2007
  • Recently introduced WBK(Wire-wounded Bulk Kagome) shows relatively superior mechanical properties compared to other types of PCM. WBK is fabricated by assembling helical wires in 6 directions. Wire being a helix, the wire's geometric properties like pitch and helical radius shows certain geometric characteristics which can play some critical role in setting up an automatic fabrication process. In this study, geometry of WBK is modeled by various transformations of a piece of helical wire and the characteristics of the geometry of an element of WBK truss are discussed. In addition, the roles of pitch and helical radius of wire in optimizing the assembling process are described and the derivation of criteria is attempted to decide proper helical radius which would maintain minimal interference between wires at the crossings.

  • PDF

Mathematical Model of Optimal Payouts under Non-linear Demand Curve

  • Won, Chaehwan
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.53-71
    • /
    • 2004
  • In this study, a mathematical model that shows the optimal payout policy is developed. The model is new and unique in the sense that not only continuous-time framework is used, but also both partial differential equation (PDE) and real-option approach are utilized in the derivation of optimal payouts for the first time. In the model building, non-linear demand curve for dividend payouts in the competitive capital markets is assumed. From the sensitivity analysis using traditional comparative static analysis, some useful managerial implications which are consistent with famous previous studies are derived under realistic conditions. All results in this study, however, are valid under the assumption that the opportunity costs follow geometric Brownian motion, which is widely used in economic science and finance literature.

Target Range Estimation Method using Ghost Target in the Submarine Linear Array Sonar (잠수함 선배열소나의 허위표적 정보를 이용한 표적의 거리추정 기법)

  • Choi, Byungwoong;Kim, Kyubaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.532-537
    • /
    • 2015
  • In this paper, we propose target range estimation method using ghost target in the submarine linear array sonar. Usually, when submarine detect target, they use passive sonar detection to avoid self-disclosure by active sonar transmission. But, originally, passive linear array sonar have limitation for target range estimation and additional processing is required to get target range information. For the case of near-field target, typical range estimation method is using multiple information by multipath effect in underwater environment. Acoustic signal generated from target are propagated along with numerous multipath in underwater environment. Since multipath target signals received in the linear array sonar have different conic angles each other, ghost target is appeared at the bearing different with real target bearing and sonar operator can find these information on the operation console. Under several assumption, this geometric properties can be analysed mathematically and we get the target range by derivation of this geometric equations using measured conic angles of real target and ghost target.

Failure Maps and Derivation of Optimal Design Parameters for a Quasi-Kagome Truss Sandwich Panel Subjected to Bending Moment (굽힘하중을 받는 준 카고메 트러스 샌드위치 판재의 파손선도와 최적설계변수의 도출)

  • Lim, Chai-Hong;Jeon, In-Su;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.96-101
    • /
    • 2007
  • A new metallic sandwich panel with a quasi-Kagome truss core subjected to bending load has been analyzed. First, equations of the failure loads corresponding to the eight failure modes are presented. Then, non-dimensional forms of the equations are derived as functions of three geometric variables, one material parameter (yield strain), one load index and one weight index. Failure maps are presented for a given weight index. By using the dimensionless forms of equations as the design constraints, two kinds of optimization are performed. One is based on the weight, that is, the objective function, namely, the dimensionless load is to be maximized for a given weight. Another is based on the load, that is, the dimensionless weight is to be minimized for a given load. The results of the two optimization processes are found to agree each other. The optimized geometric variables are derived as a function of given weights or failure loads. The performance of the quasi-Kagome truss as the core of a sandwich panel is evaluated by comparison with those of honeycomb cored and octet truss cored panels

  • PDF