• Title/Summary/Keyword: Geometric Data

Search Result 1,617, Processing Time 0.03 seconds

Parallel Algorithm for Spatial Data Mining Using CUDA

  • Oh, Byoung-Woo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • Recently, there is an increasing demand for applications utilizing maps and locations such as autonomous vehicles and location-based services. Since these applications are developed based on spatial data, interest in spatial data processing is increasing and various studies are being conducted. In this paper, I propose a parallel mining algorithm using the CUDA library to efficiently analyze large spatial data. Spatial data includes both geometric (spatial) and non-spatial (aspatial) attributes. The proposed parallel spatial data mining algorithm analyzes both the geometric and non-spatial relationships between two layers. The experiment was performed on graphics cards containing CUDA cores based on TIGER/Line data, which is the actual spatial data for the US census. Experimental results show that the proposed parallel algorithm using CUDA greatly improves spatial data mining performance.

Calaulation of Geometric Geoidal Heights Using Gps/leveling Data in Study Area (Gps/leveling 데이터에 의한 기하학적 지오이드고의 산출)

  • 이석배;황용진;이재원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • It can be classified in various methods to get the geoidal heights. It can be achieved geometric geoidal heights if we do GPS surveying in leveling point. The aims of this paper are calculation of geometric geoidal heights using GPS/leveling data in study area and evaluation of the global and local geoid models in and around Korean peninsula. For this study, study area was selected in the leveling line from Kunsan to Chonju city and GPS surveying was accomplished in the leveling line. And, also spherical harmonic analysis was made on the three global geopotential models, OSU91A, EGM96, EGM96m under same condition. Then the differences were calculated between geometric geoidal heights and geoidal heights of 3 geopotential models, KOGD2002 which was Korean gravimetric geoid model. The results shows that EGM96m is the best model because the differences between geoidal heights of E6M96m and geometric geoidal heights of GPS/Leveling data appear the smallest value among them.

An Extraction of Geometric Characteristics Paramenters of Watershed by Using Geographic Information System (지형정보시스템을 이용한 하천유역의 형태학적 특성인자의 추출)

  • 안상진;함창학
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.115-124
    • /
    • 1995
  • A GIS is capable of extracting various hydrological factors from DEM(digital elevation model). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor among various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated by using the functions of ARC/INFO software as GIS package. Scanned data was used for this study and it is converted to DEM data. Various forms of representation of spatial data are handled in main module and GRID module of ARC/INFO. GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flow direction, stream networks and orders are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics parameters of watershed can be quantified with ease using GIS technique and the hardsome process can be automated.

  • PDF

Correction of Radiometric Distortion Caused by Geometric Property in SAR image using SAR Simulation (SAR영상의 모의제작에 의한 기하학적 복사왜곡의 보정)

  • Jeong, Soo;Yeu, Bock-Mo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • SAR data can be achieved independently of weather conditions or sun illumination which is main limitation of electro-optical sensor to get image. The information from imagery can be more enlarged using Shh data be-cause SAR data offers different information from electro-optical sensor. SAR data contains various distortions caused by the radar specification and geometric properties of data acquisition. These distortions should be removed to get the information with acceptable accuracy. In this study, we aimed to correct the radiometric distortion in Shh image caused by the geometric property of the object. For this purpose, we simulated the SAR image by modelling of the power of return beam which is variable according to the geometric configuration between SAR antenna and ground object. Dividing the SAR image by the simulation image, then, we can get the radiometrically corrected image. As a result of this study, we could minimize the effect of radiometric distortion in achieving some qualitative information from SAR image for the related field, such as Geospatial Information System.

  • PDF

Receiving Time Calculation Method for Lines of COMS MI LV1B Images (통신해양기상위성 기하보정 영상의 라인 별 수신시각 계산)

  • SEO, Seok-Bae;AHN, Sang-Il
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • MI LV1B images, geometric corrected data of COMS MI, has no time information per each line, but field of weather prediction using the MI LV1B images needs time information on it. This paper explains two calculation methods for receiving time on lines of MI LV1B images and analyzes difference between two calculation methods using simulated data.

  • PDF

Geometric Correction of the NOAA/AVHRR Imagery (NOAA/AVHRR 영상의 기하학적 보정)

  • 서명석;신경섭;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 1990
  • Methods of geometric correction for the Advanced Very High Resolution Radiometer imagery of NOAA satellites were developed and applied to the software for image processing of meteorological satellite data. The software for finding the earth location of each scan position and the software for gridding on original imagery were dedigned. On the assumption of circular orbits and the spherical earth, the methods developed were sufficiently accurate in the purpose of most meteorological data analyses.

Study on Standard Product Data Translation Method (표준 제품 데이터 변환 방법에 관한 연구)

  • 안만진;유상봉
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.260-273
    • /
    • 1998
  • Standardization for product data has not been well established and many different presentation methods are being used in CAD/CAM industry. In order to accomplish system integration or concurrent engineering in such situation, product data exchanges among heterogeneous system are needed. This paper presents a data exchange system between IGES and STEP (AP 202 and 203). The schemata of those standard data formats are represented in EXPRESS and the relationship between corresponding entities are written in EXPRESS-X. Relationships among Non-geometric entities (such as color and annotations) as well as geometric entities are examined. Because the system implemented in this research uses high-level schema language and mappign language, it can be easily extended to support new data formats.

  • PDF

Selection and Allocation of Point Data with Wavelet Transform in Reverse Engineering (역공학에서 웨이브렛 변황을 이용한 점 데이터의 선택과 할당)

  • Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.158-165
    • /
    • 2000
  • Reverse engineering is reproducing products by directly extracting geometric information from physical objects such as clay model wooden mock-up etc. The fundamental work in the reverse engineering is to acquire the geometric data for modeling the objects. This research proposes a novel method for data acquisition aiming at unmanned fast and precise measurement. This is come true by the sensor fusion with CCD camera using structured light beam and touch trigger sensor. The vision system provides global information of the objects data. In this case the number of data and position allocation for touch sensor is critical in terms of the productivity since the number of vision data is very huge. So we applied wavelet transform to reduce the number of data and to allocate the position of the touch probe. The simulated and experimental results show this method is good enough for data reduction.

  • PDF

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF