• 제목/요약/키워드: Geometric Data

검색결과 1,616건 처리시간 0.026초

3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구(1) -고정도 곡면가상 정보 생성을 위한 이론적 고찰- (A Study on CAM System for Machining of Sculptured Surface in Mold Cavity(1) - Generation of High Precision Machining Data for Curved Surfaces -)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.92-100
    • /
    • 1994
  • For generating NC machining data automatically, it is important to handle computer models such as geometric shape data including engineering specifications for the mechanical part to be manufactured. We proposed unique CAM system for a personal computer that can define the geometric shape in an ease manner and machine the sculptured surfaces of a mold cavity. In this paper, the theoretical basis of generation of high precision machining data for a mold cavity is obtained. The first is geometric modelling, and the second is high precision machining with an optimized tool path algorithm satisfying given tolerance limits. Especially, the bicubic Bezier basis function is adopted for a geometric modelling.

  • PDF

위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정 (Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARSAT Data)

  • 양찬수
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 춘계학술발표회
    • /
    • pp.49-52
    • /
    • 2004
  • RADARSAT은 선박탐지를 포함하는 해상감시에 있어서 중요한 역할을 할 수 있는 데이터중의 하나이며, 이것은 레이더센서를 가지고 있어 전천후 및 주야불문이라는 두 가지 주요 이점을 가지고 있기 때문에 가능하다. 그러나, 합성개구레이더의 이미징시에 대기의 영향은 무시될 수 없으며, 다양한 형태로 기하 변형이 발생하게 된다. 본 연구에서는, 레벨 1의 georeferenced SGX 데이터를 사용해서 RADARSAT의 합성개구레이더에 대한 기하/대기 보정을 시험하였다. 대기보정을 위한 레이더 산란파 크기 등의 정보는 데이터 헤더자료로부터 추출하였으며, DN을 beat nought와 sigma nought로 변환을 실시하였다. 마지막으로 자동 기하보정결과를 실재 좌표 값과 비교하였다.

  • PDF

AN ALGORITHM FOR CIRCLE FITTING IN ℝ3

  • Kim, Ik Sung
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.1029-1047
    • /
    • 2019
  • We are interested in the problem of determining the best fitted circle to a set of data points in space. This can be usually obtained by minimizing the geometric distances or various approximate algebraic distances from the fitted circle to the given data points. In this paper, we propose an algorithm in such a way that the sum of the squares of the geometric distances is minimized in ${\mathbb{R}}^3$. Our algorithm is mainly based on the steepest descent method with a view of ensuring the convergence of the corresponding objective function Q(u) to a local minimum. Numerical examples are given.

측량 데이터를 이용한 현수교의 형상오차 원인 추정 (Estimation of Geometric Error Sources of Suspension Bridge using Survey Data)

  • 박용명;조현준;정진환;김남식
    • 한국강구조학회 논문집
    • /
    • 제19권3호
    • /
    • pp.313-321
    • /
    • 2007
  • 본 연구에서는 공용 중인 현수교에서 측량된 데이터를 이용하여 현수교의 형상오차 원인을 추정하는 방법을 제시하였다. 주케이블의 여러 점에서 측량된 데이터와 설계시의 형상과의 차이를 형상오차로 정의하고, 현수교의 형상오차 원인으로 보강형 자중의 변동과 지반의 크리프로 인한 앵커리지 기초의 변형으로 가정하였다. 보강형 자중의 변동 및 앵커리지 기초의 변형에 대한 현수교 구조계의 영향행렬을 이용하여 주케이블의 형상오차를 유발한 자중의 변동량 및 기초의 변형량을 추정하였다. 공용 중인 광안대교를 대상으로 본 기법의 타당성을 검토한 후 실제 측량 데이터를 이용하여 동 교량의 형상오차 원인 분석에 적용하였다.

Geometrical Compensation of Injection-Molded Thin-Walled Parts in Reverse Engineering

  • Kim Yeun Sul;Lee Hi Koan;Huang Jing Chung;Kong Young Sik;Yang Gyun Eui
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.12-18
    • /
    • 2005
  • A geometric compensation of thin-walled molded parts in reverse engineering is presented. Researches in reverse engineering have focused on the fitting of points to curves and surfaces. However, the reconstructed model is not the geometric model because the molded parts have some dimensional errors in measurements and deformation during molding. Geometric information can give an improved accuracy in reverse engineering. Thus, measurement data must be compensated with geometric information to reconstruct the mathematical model. The functional and geometric concepts of the part can be derived from geometric information. LSM (Least square method) is adopted to determine the geometric information. Also, an example of geometric compensation is given to improve the accuracy of geometric model and to inspect the reconstructed model.

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

강교량의 설계정보 데이터베이스 구축 (Database Development for Archiving Detailed Design Information of Steel Bridges)

  • 이상호;정연석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.313-320
    • /
    • 2003
  • The efficient and well organized database is essential for the management of information in every industrial field. In this study, a practical and effective database which can handle 3-D information of steel bridges is built on the basis of a STEP-based data model. The data model of steel bridge information is classified into geometric and non-geometric part and the design information is represented by linking geometric information and life cycle supported non-geometric information. Especially, the shape information is represented by boundary representation method, which is one of the representative methods of solid model information. In this study, ISO/STEP(STandard for the Exchange of product model data) AP203(configuration controlled design) EXPRESS schema is used to represent the shape information of steel bridge. The syntax of EXPRESS schema of developed data model is verified by NIST Expresso - is a tool for parsing and compiling EXPRESS schema. Also, this study verifies the conformance of the data model by applying to the real data of Hannam bridge. Therefore, the constructed database using STEP-based data model of steel bridges can be used effectively in the concurrent engineering point of view with transferring and sharing steel bridge information.

  • PDF

PDM기반 조립체 DMU를 위한 웹뷰어 형상커널의 설계 (Geometric Kernel Design of the Web-Viewer for the PDM Based Assembly DMU)

  • 송인호;정성종
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.260-268
    • /
    • 2007
  • Demand for the use of 3D CAD DMU systems over the Internet environment has been increased. However, transmission of commercial 3D kernels has delayed the communication effectiveness due to the kernel size. Light weight CAD geometric kernel design methodology is required for rapid transmission in the distributed environment. In this paper, an assembly data structure suitable for the top-down and bottom-up assembly models has been constructed. Part features are stored without a hierarchy so that they are created and saved in no particular order. In particular, this paper proposes a new assembly representation model, called multi-level assembly representation (MAR), for the PDM based assembly DMU system. Since the geometric kernel retains assembly hierarchy and topological information, it is applied to the web-viewer for the PDM based DMU system. Effectiveness of the proposed geometric kernel is confirmed through various case studies.

GPS/leveling 데이터에 의한 기하학적 지오이드고의 산출 (Calaulation of geometric geoidal heights using GPS/leveling data in study area)

  • 이석배
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.27-31
    • /
    • 2003
  • It can be classified in various methods to get the geoidal heights. It can be achieved geometric geoidal heights if we do GPS surveying in leveling point. The aims of this paper are calculation of geometric geoidal heights using GPS/leveling data in study area and evaluation of the global and local geoid models in and around Korean peninsula. For this study, study area was selected in the leveling line from Kunsan to Chonju city and GPS surveying was accomplished in the leveling line. And, also spherical harmonic analysis was made on the three global geopotential models, OSU91A, EGM96, EGM96m under same condition and KOGD2002, Korean gravimetric geoid model was made in this study The results shows that EGM96m is the best model because the differences between geoidal heights of EGM96m and geometric geoidal heights of GPS/Leveling data appear the smallest value among them.

  • PDF