• Title/Summary/Keyword: Geometric Adaptive Control

Search Result 44, Processing Time 0.031 seconds

Programming of adaptive repair process chains using repair features and function blocks

  • Spocker, Gunter;Schreiner, Thorsten;Huwer, Tobias;Arntz, Kristian
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • The current trends of product customization and repair of high value parts with individual defects demand automation and a high degree of flexibility of the involved manufacturing process chains. To determine the corresponding requirements this paper gives an overview of manufacturing process chains by distinguishing between horizontal and vertical process chains. The established way of modeling and programming processes with CAx systems and existing approaches is shown. Furthermore, the different types of possible adaptions of a manufacturing process chain are shown and considered as a cascaded control loop. Following this it is discussed which key requirements of repair process chains are unresolved by existing approaches. To overcome the deficits this paper introduces repair features which comprise the idea of geometric features and defines analytical auxiliary geometries based on the measurement input data. This meets challenges normally caused by working directly on reconstructed geometries in the form of triangulated surfaces which are prone to artifacts. Embedded into function blocks, this allows the use of traditional approaches for manufacturing process chains to be applied to adaptive repair process chains.

Configuration Control of Vaiable-Geometry Truss Structures (가변형상 트러스구조물의 자세제어)

  • Roh, Tae-Hwan;Kim, Tae-Ik;Park, Hyun-Chul;Kwon, Young-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2854-2865
    • /
    • 1996
  • The concept of variable-geometry truss structure(VGTS) is introduced as a class of actively controlled adaptive structure. VGTS can purposefully vary its geometric configurations by changing the lengths of some members of the structure. General kinematics and inverse kinematics of a statically determinate VGTS(variable geometry truss structure) are studied. The solution technique is based on the Jacobian matrix obtained via joint equilibrium equations. Pseudoinverse control method is applied to resolve the redundancy of a large VGTS. two types of actuator layout of octahedral type VGTS, VG truss and Stewart platform, are compared. Introducing the concept of performance index, Stewart platform based layout was found to has less consumption energy and manipulation time. A functional VGTS model with 3 octahedral modules is designed and manufactured for the labaratory demonstration. Six vertically located length-variable members are used to create general 6 d.o.f. motions.

Design of Geometric Adaptive Controller for the Shaft Straightening Machine (축교정기용 기하학적 적응제어기 설계)

  • 안중용;안동철;김승철;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.623-627
    • /
    • 1995
  • This paper deals with the process which automatically straightens the shaft whose straightness is over the tolerance. The developed straightening process is composed of the measuring module and the control module. In the measuring module, the deflection of each measuring point is automatically measured, and the press point and the reference press stroke is determined. In the control module, the springback is predicted by the observer using the calculated reference press stroke and on-line-measured force and deflection. Through a series of experiments, the validity of the proposed process was verified.

  • PDF

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.

DIRECT INVERSE ROBOT CALIBRATION USING CMLAN (CEREBELLAR MODEL LINEAR ASSOCIATOR NET)

  • Choi, D.Y.;Hwang, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1173-1177
    • /
    • 1990
  • Cerebellar Model Linear Associator Net(CMLAN), a kind of neuro-net based adaptive control function generator, was applied to the problem of direct inverse calibration of three and six d.o.f. POMA 560 robot. Since CMLAN autonomously maps and generalizes a desired system function via learning on the sampled input/output pair nodes, CMLAN allows no knowledge in system modeling and other error sources. The CMLAN based direct inverse calibration avoids the complex procedure of identifying various system parameters such as geometric(kinematic) or nongeometric(dynamic) ones and generates the corresponding desired compensated joint commands directly to each joint for given target commands in the world coordinate. The generated net outputs automatically handles the effect of unknown system parameters and dynamic error sources. On-line sequential learning on the prespecified sampled nodes requires only the measurement of the corresponding tool tip locations for three d.o.f. manipulator but location and orientation for six d.o.f. manipulator. The proposed calibration procedure can be applied to any robot.

  • PDF

Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks (신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계)

  • Kim, Kyoung-Min;Lyou, Kyoung;Jung, Woo-Yong;Park, Gwi-Tae;Park, Joong-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

A Study on the Implementation of the Stabilizer of Sun Tracking System for a ship (선박용 태양추적 시스템을 위한 스데빌라이저 구현에 관한 연구)

  • 김태훈;김종화;안정훈;이병결
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.163-163
    • /
    • 2000
  • The tracking system on the moving vehicle is made up of two parts. One is a stabilizer which is flatting the system against the moving vehicle, the other is a tracker which is tracking the target. This makes use of the geometric information of the tracking target and that utilizes the dynamic information of the moving vehicle equipping the tracking system. Especially the stabilizer is very important for an ocean vehicle affected by wave, wind, and current. In this paper, the stabilizer of sun tracking system for a ship is developed.

  • PDF

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Development of surface defect inspection algorithms for cold mill strip using tree structure (트리 구조를 이용한 냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyung-Min;Jung, Woo-Yong;Lee, Byung-Jin;Ryu, Gyung;Park, Gui-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.365-370
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip using tree structure. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, histogram-ratio features are calculated. The histogram-ratio feature is taken from the gray-level image. For the defect classification, we suggest a tree structure of which nodes are multilayer neural network clasifiers. The proposed algorithm reduced error rate comparing to one stage structure.

  • PDF

Stereo Camera-based Target Surveillance-Tracking System through an adaptive Pan/tilt Control (적응적인 스테레오 카메라 기반의 팬/틸트 제어를 통한 표적 감시-추적 시스템)

  • Cho, Do-Hyeoun;Ko, Jung-Hwan;Won, Young-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1269-1272
    • /
    • 2005
  • In this paper, a new intelligent moving target tracking and surveillance system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time.

  • PDF