• Title/Summary/Keyword: Geological structures

Search Result 383, Processing Time 0.022 seconds

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

Chartacteristics of Water-bottom Reflection Coefficients in Bransfield Strait, Antarctic Peninsula (남극 브랜스필드 해협의 해저면 반사계수 특성)

  • Jin, Yeong Geun;Hong, Jong Guk;Lee, Deok Gi
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.241-250
    • /
    • 1999
  • Reflection coefficients of the seafloor have been calculated from the amplitude ratio of secondary to primary water bottom reflection in seismic data obtained from Bransfield Strait, Antarctic Peninsula. Test processing for the coefficients shows that moving average is effective to reduce severe fluctuation of the coefficient measured at each point. Relationship between the coefficients and the properties of water bottom is analyzed to illuminate geological environment. In the central Bransfield Basin, the magnitude of reflection coefficients decreases as it is distant from the sedimentary sources. Reflection coefficients range from 0.12 to 0.2 near the continental slope of the basin, and from 0.1 to 0.12 in the basin floor. In the western Bransfield basin, reflection coefficients between 0.2 to 0.3 are obtained from the area eroded by glacial movement. On the volcanic structures near Deception Island, the coefficients show relatively high values more than 0.2. Paleo-geological structures uplifted by tectonic movement and outcropped by glacial erosion have relatively high coefficients.

  • PDF

Geological Application of Lineaments from Satellite Images - A Case Study of Euiseong Sub-basin (위성 영상선구조의 지질학적 응용 - 의성소분지의 경우)

  • 김원균;김상완;원중선;민경덕;김정우
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.25-36
    • /
    • 2000
  • To evaluate the feasibility of using lineaments for the interpretation of regional geological structures, the extracted lineaments from satellite image and surveyed surface geological features mapped in the field were analyzed for the Euiseong Sub-basin. The lineaments extracted from Landsat-5 TM images show primary directions of N20$^{\circ}$~30$^{\circ}$E, N60$^{\circ}$~70$^{\circ}$E, N60$^{\circ}$~70$^{\circ}$W, which represent the trends of faults, strikes, and joints. In the sedimentary formation in the northern part of Palgongsan Uplift Zone, primary directions of the lineaments are NNE and NWW, and NEE in southern parts. The analysis of satellite lineaments is proved to be very useful to study the large-scale structures and surface geology of the Euiseong Sub-basin, whereas the previous research using brittle tectonics approach was advantaged in the outcrop scale in interpretation.

Development and Application of Teaching Materials for Geological Fieldwork in the Area of Bongwhabong, Buan-gun, Jeonbuk, Korea (전북 부안군 봉화봉 일대의 야외지질 학습자료 개발 및 적용)

  • Park, Jae-Moon;Ryang, Woo-Hun;Cho, Kyu-Seong;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.883-896
    • /
    • 2009
  • This study is to develop teaching materials for geological fieldwork around Bonghwabong area in the national park of the Byeonsan Peninsula, Buangun, Jeonbuk. The developed materials are applied in the geological fieldwork of science high school students to maximize the effects of use. The sedimentary succession of the Bonghwabong area in the Cretaceous age, Mesozoic, represents large-scale and distinctive sedimentary structures on the sea cliffs, which are utilized as teaching materials for earth science fieldwork. The area of Bonghwabong also comprises various geological structures related to advanced learning programs as well as those within the curriculum of high school earth science. A five-step fieldwork model was applied to 15 students in clubs related to earth science in a science high school. This study used a qualitative methodology to analyze students' responses that were gathered about the process of fieldwork. During the activity, a qualitative analysis was carried out by using discussions and interviews both with the students and the teacher. Results indicated that the fieldwork activity using teaching materials was effective in helping the students improve their self-directed learning and practical understanding of earth science.

Seismic Tomography using Graph Theoretical Ray Tracing

  • Keehm, Young-Seuk;Baag, Chang-Eob;Lee, Jung-Mo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.23-34
    • /
    • 1997
  • Seismic tomography using the graph theoretical method of ray tracing is performed in two synthetic data sets with laterally varying velocity structures. The straight-ray tomography shows so poor results in imaging the laterally varying velocity structure that the ray-traced tomographic techniques should be used. Conventional ray tracing methods have serious drawbacks, i.e. problems of convergence and local minima, when they are applied to seismic tomography. The graph theretical method finds good approximated raypaths in rapidly varying media even in shadow zones, where shooting methods meet with convergence problems. The graph theoretical method ensures the globally minimal traveltime raypath while bending methods often cause local minima problems. Especially, the graph theoretical method is efficient in case that many sources and receivers exist, since it can find the traveltimes and corresponding raypaths to all receivers from a specific source at one time. Moreover, the algorithm of graph theoretical method is easily applicable to the ray tracing in anisotropic media, and even to the three dimensional case. Among the row-active inversion techniques, the conjugate gradient (CG) method is used because of fast convergence and high efficiency. The iterative sequence of the ray tracing by the graph theoretical method and the inversion by the CG method is an efficient and robust algorithm for seismic tomography in laterally varying velocity structures.

  • PDF

Distribution and Characteristics of the Sedimentary Basin Offshore San-in to Tsushima Islands (일본 산닌-쓰시마 해양에 존재하는 퇴적분지의 분포와 특성)

  • Park Se-Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.34-39
    • /
    • 2004
  • This article discusses stratigraphy and geological history of continental shelf area covering of offshore San-in to Tsushima islands. Geological data from 5 wells and detailed seismic surveys indicate that sediments in the studied area are divided into 4 stratigraphic groups ranging from Oligocene to Tertiary in age, namely X, H, K, and D groups in ascending order. The oldest X group of Oligocene time comprises paralic sediments including volcanics deposited in the initial stage of basin-formation. N group of mainly lower Miocene time consists of deep marine sediment, representing the highest stage of transgression. Sediments of the K group of middle Miocene time show distinct off-lapping depositional pattern during the basinfilling stage. The youngest D group covers these older groups unconformably. Strong deformation of sediments prior to the deposition of the D group formed many anticlinal structures. Five exploratory wells were drilled at the selected structures, where only minor gas shows were encountered. The area provides the enough palaeotemperature to mature the source rocks at moderate depth.

  • PDF

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Analysis of Geological Lineaments with Compensation of the Sun's Azimuth Angle (태양방위각 보상에 의한 지질학적 선구조 분석)

  • Lee Jingeol;Lee Gyoubong;Hwang Sang-Gi
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.178-185
    • /
    • 1999
  • Geological structures such as fault and fracture patterns provide important information about preliminary exploration of mineralized areas and geological characterization. They may be recognized and interpreted from satellite images as line-like features usually referred to as lineaments. A proposed filtering method taking the sums azimuth angle into account is utilized, by which linear edges from low contrast areas where features extend parallel to the sun direction and in mountain shadow can be effectively extracted. Then, generalized Hough transform is applied to extract lineaments which correspond to fault and fracture patterns.

  • PDF

Influence of fault on civil structure and geotechnical investigation (Case Histories) (단층이 토목구조물에 미치는 영향과 지반조사(사례 중심으로))

  • 박남서
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.113-133
    • /
    • 2000
  • The role of site investigation for adequate design of civil structure begins from siting to comment on design and providing other available geotechnical data. As the scope of human's life is wider than before, civil works have become conducted at sites of worse geological condition. So, it is necessary to have more adequate comprehension on the geological condition than ever in order to solve complicated geotechnical problems. In this paper, four fault related cases are introduced. Usually faults are the most influential geological structures on civil works. And the analyses with adequate countermeasures to each case are summarized.

  • PDF

Geological Structures of the Imgye Area, Kangweondo, Korea (강원도(江原道) 임계지역(臨溪地域)의 지질구조(地質構造))

  • Kim, Jeong Hwan;Kee, Weon Seo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 1991
  • The Imgye area, in the NE Taebaegsan Region, consists of Precambrian granites and schist complex at the base and Paleozoic sedimentary rocks and amphibolite at cover. The granites in the area were previously thought to be Paleozoic in age, but recent geochronological data yields isotopic age ranging from $1837{\pm}82Ma$ to $2108{\pm}82Ma$ by Rb-Sr whole rock method. Therefore, basement-cover relations in the area should be reexamined. During the study, mylonite zone recognized along the contact boundary between Precambrian granites and Cambrian Jangsan Quartzite Formation. Mylonite zone has 150 - 250 m in width. Mylonitic rocks can divide into two groups; quartz mylonite derived from Jangsan Formation and mylonitic granites from Precambrian granites. Intensity of mylonitic foliation decreased toward the north. Amphibolite occurs as an intrusive sills within mylonite zone. Mineral fabrics and small scale shear zones are commonly seen in amphibolite. It indicates that intrusive age of amphibolite is synchronous to the formation of mylonite zone. Mylonite zone was reactivated as ductile thrust faults and forms the hinterland dipping imbricate zone during the Cretaceous Bulkuksa Orogeny. The near parallelism of mineral stretching lineation and long axis of strain ellipes indicates that the area is affected by a homogeneous pure shear flattening together with the variable components of simple shear.

  • PDF