• Title/Summary/Keyword: Geological storage

Search Result 144, Processing Time 0.028 seconds

Research for development of small format multi -spectral aerial photographing systems (PKNU 3) (소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구)

  • 이은경;최철웅;서영찬;조남춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

Rainfall Harvesting as an Alternative Water Supply in Water Stressed Communities in Aguata-Awka Area of Southeastern Nigeria

  • Okpoko, Ephraim;Egboka, Boniface;Anike, Luke;Okoro, Elizabeth
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • Alternative sources of water are sought in some water stressed communities in the study area. The study focuses on the Aguata-Awka area of southeastern Nigeria. Aquifers occur at great depths, and surface waters may be far from homesteads. The scarcity of water has necessitated the people to adopt various local technologies for harvesting rainfall. The local technology includes collecting rainwater from roofs and channeling the water into large underground tanks, shallow wells and surface reservoirs. Large concrete tanks of $6m{\times}6m{\times}4m$ dimensions are often built underground and can store $144m^3$ of water. Surface reservoirs built on 4 m concrete pillar supports having dimensions of $10m{\times}10m{\times}4m$ and have a storage capacity of $400m^3$. Water samples were collected at 3 different locations of Agulu, Ekwulobia, and Awka and were analyzed for their physical, chemical, and bacteriological parameters. Results indicate a range of values for pH, 5.9 to 7.1; turbidity, 0.9 to 2.7; total dissolved solids, 80 to 170 mg/L; total hardness, 4.5 to 6.4 mg/L; magnesium, 1.2 to 1.4 mg/L; bicarbonate, 19.4 to 83.6 mg/L; and sulfate, 3.6 to 6.4 mg/L. Bacteriological analysis results were negative for fecal and total coliform counts. All parameters, with the exception of pH where aluminum and galvanized iron roofs are used for collection, fall within the recommended guidelines for drinking water quality of the World Health Organization, and the Standard Organization of Nigeria, new Nigerian standards for drinking water quality. Magnesium is above the maximum permitted level for consumer acceptability of the Nigerian standards for drinking water quality. The water can be classified as fresh moderately hard and soft. The water can be described as a calcium and bicarbonate type.

Site Prioritization for Artificial Recharge in Korea using GIS Mapping (지리정보시스템을 이용한 우리나라 인공함양 개발 유망지역 분석)

  • Seo, Jeong-A;Kim, Yong-Cheol;Kim, Jin-Sam;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.66-78
    • /
    • 2011
  • It is getting difficult to manage water resources in South Korea because more than half of annual precipitation is concentrated in the summer season and its intensity is increasing due to global warming and climate change. Artificial recharge schemes such as well recharge of surface water and roof-top rainwater harvesting can be a useful method to manage water resources in Korea. In this study, potential artificial recharge site is evaluated using geographic information system with hydrogeological and social factors. The hydrogeological factors include annual precipitation, geological classification based on geological map, specific capacity and depth to water level of national groundwater monitoring wells. These factors were selected to evaluate potential artificial recharge site because annual precipitation is closely related to source water availability for artificial recharge, geological features and specific capacity are related to injection capacity and depth to water is related to storage capacity of the subsurface medium. In addition to those hydrogeological factors, social aspect was taken into consideration by selecting the areas that is not serviced by national water works and have been suffered from drought. These factors are graded into five rates and integrated together in the GIS system resulting in spatial distribution of artificial recharge potential. Cheongsong, Yeongdeok in Gyeongsangbuk-do and Hadong in Gyeongsangnam-do, and Suncheon in Jeollanam-do were proven as favorable areas for applying artificial recharge schemes. Although the potential map for artificial recharge in South Korea developed in this study need to be improved by using other scientific factors such as evaporation and topographical features, and other social factors such as water-curtain cultivation area, hot spring resorts and industrial area where groundwater level is severely lowered, it can be used in a rough site-selection, preliminary and/or feasibility study for artificial recharge.

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

액화석유가스(LPG) 지하저장기지에서의 TSP(Tunnel Seismic Prediction)탐사

  • Cha, Seong-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.75-86
    • /
    • 2002
  • A TSP(Tunnel Seismic Prediction) survey which is modified VSP(Vertical Seismic Profiling) survey applied in tunnel was carried out at Pyongtaek and Incheon liquefied petroleum gas(LPG) storage cavern during excavation. The TSP survey in Pyongtaek LPG storage cavern which is located below Namyangho was performed to confirm the location and orientation of the fault detected at pre-investigation stage. The TSP survey was carried out in access tunnel, construction tunnel, and watercurtain tunnel to characterize 3 dimensional figure of the fault. The results of TSP survey are compared four in vestigation boreholes drilled in shelter of access tunnel. The fault was also detected by borehole survey and the location was coincided with the result of TSP survey. Depending on the result of TSP survey and core logging, the design such as cavern layout and length was changed. Another TSP survey was performed in Incheon LPG storage cavern which is located below sea. Because of poor geological information at pre-investigation stage and suffering from heavy leakage of groundwater, the TSP survey to detect fracture zone was carried out. The support and grouting design was reflected by the result of TSP survey.

  • PDF

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam (나노입자기반 CO2 폼을 이용한 CO2 지중저장에 대한 기술적 고찰)

  • Son, Han Am
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.213-220
    • /
    • 2020
  • When CO2 foam is injected into the saline aquifer, the relative permeability of CO2 decreases and its viscosity increases, thereby reducing mobility in porous media and ultimately improving CO2 storge with enhanced sweep efficiency. In general, surfactants were used to fabricate CO2 foam. Recently, nanoparticles have been used to form stable foam than surfactant. This paper introduces CO2 storage technology using nanoparticle stabilized CO2 foam. If the surface of the hydrophilic nanoparticles is partially modified into a CO2-philic portion, the particles have an affinity for CO2 and water, thus forming a stable CO2 foam even in deep saline aquifers under high temperature and high salinity conditions, thereby it can be stored in the pores of the rock. In terms of economics, injection method using nanopaticle-stabilized CO2 foam is more expensive than the conventional CO2 injection, but it is estimated that it will have price competitiveness because the injection efficiency is improved. From an environmental point of view, it is possible to inject chemical substances such as surfactants and nanomaterials into aquifers or reservoirs for specific purposes such as pollutant removal and oil production. However, some studies have shown that nanoparticles and surfactants are toxic to aquatic animals, so environmentally proven substances should be used. Therefore, further research and development will be needed to study the production and injection of nanoparticle-stabilized CO2 foam that are environmentally safe and economically reasonable.

Development of CANDU Spent Fuel Disposal Concepts for the Improvement of Disposal Efficiency (처분효율 향상을 위한 CANDU 사용후핵연료 처분개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • There are two types of spent fuels generated from nuclear power plants, CANDU type and PWR type. PWR spent fuels which include a lot of reusable material can be considered to be recycled. CANDU spent fuels are considered to directly disposed in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System(KRS) which is to dispose both PWR and CANDU spent fuels, the more effective CANDU spent fuel disposal systems have been developed. To do this, the disposal canister has been modified to hold the storage basket which can load 60 spent fuel bundles. From these modified disposal canisters, the disposal systems to meet the thermal requirement for which the temperature of the buffer materials should not be over $100^{\circ}C$ have been proposed. These new disposals have made it possible to introduce the concept of long tenn storage and retrievabililty and that of the two-layered disposal canister emplacement in one disposal hole. These disposal concepts have been compared and analyzed with the KRS CANDU spent fuel disposal system in terms of disposal effectiveness. New CANDU spent fuel disposal concepts obtained in this study seem to improve thermal effectiveness, U-density, disposal area, excavation volume, and closure material volume up to 30 - 40 %.

  • PDF

Case histories on design alternatives during excavation of underground LPG storage cavern and traffic tunnel using TSP survey (TSP 탐사를 이용한 지하유류저장공동 및 도로터널의 시공 중 설계변경 사례 고찰)

  • Cha Sung-Soo;Kim Se-Hoon;Yun Sang-Pil;Bae Jung-Sik;Lee Jin-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.117-136
    • /
    • 1999
  • The geophysical survey at pre-investigation stage can hardly provide the detailed information on geological structure of site which has difficulty in access and thick overburden. The TSP (VSP applied in tunnel) survey at post-investigation stage can show the detailed geology ahead of tunnel and around cavern. The TSP survey was carried out at the Pyongtaek LPG storage cavern site during the cavern excavation and provided the location and orientation of the fault inferred below Namyangho. In order to confirm the result of TSP survey four boreholes were drilled in access tunnel. The fault was also detected by borehole survey and the location was coincided with the result of TSP survey. Depend on the result of TSP survey and core logging, the design such as cavern layout and length could have been changed. As another case history the TSP survey was performed at the Mumeuje road tunnel which has poor geological information due to thick overburden. The support design was also changed on the base of TSP survey.

  • PDF

Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope (광릉 산지사면에서의 선행강우지수와 토양저류량 비교연구)

  • Gwak, Yong-Seok;Kim, Su-Jin;Lee, Eun-Hyung;Hamm, Se-Yeong;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.30-41
    • /
    • 2016
  • The temporal variation of soil water storage is important in hydrological modeling. In order to evaluate an antecedent wetness state, the antecedent precipitation index (API) has been used. The aim of this article is to compare observed soil water storage with APIs calculated by widely used four equations, to configure the relationship between soil water storage and API by a regression model for one-year(2009), and to predict the soil water storage for the next two years(2010~2011). The soil water storage was evaluated from the observed soil moisture dataset in soil depths of 10, 30, 60cm at 21 locations by TDR measurement system for 3 years. As a result, API with the exponential function among the four equations can describe the variation of the observed soil water storage. Monthly optimized parameters of the API's equations seemed to be roughly related with the (potential) evapotranspiration (PET). Using revised monthly optimized parameters of APIs considering the seasonal pattern of PET, we characterize the relationship between API and the observed soil water storage for one year, which looks better than those of other researches.