• Title/Summary/Keyword: Geological disasters

Search Result 44, Processing Time 0.027 seconds

A Development of Rail-Transport Operation Control for High-Speed Railway under Rainfall (고속철도의 안전운행을 위한 강우시 열차운전규제기준의 제안)

  • Shin, Min-Ho;Hong, Man-Yong;Lee, Seong-Hyeok;Kim, Hyun-Ki;Kim, Jung-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.111-118
    • /
    • 2003
  • Korea High-Speed Railway has various safety systems to secure safe and stable transportation and makes assurance doubly sure to minimize casualty and property damage caused by natural disasters. But, there is no regulation that reflects domestic railway line, climate, topographical and geological characteristic in introducing the foreign regulations yet. Therefore, it is necessary for us to modify a regulation which is suitable to domestic high-speed railway. In this study, it is possible to establish more reasonable boundary rainfall by grasping and improving the troubles with existing boundary rainfall that is scheduled to be utilized for high-speed rail-transport operation control under rainfall. Also, it is possible to insure the safety of train by four steps such as 'normal operation', 'warning issue', 'train speed control' and 'train stop' using the established boundary rainfall. It will go far toward minimizing the occurrence of natural disasters.

DATCN: Deep Attention fused Temporal Convolution Network for the prediction of monitoring indicators in the tunnel

  • Bowen, Du;Zhixin, Zhang;Junchen, Ye;Xuyan, Tan;Wentao, Li;Weizhong, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.601-612
    • /
    • 2022
  • The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

Risk identification, assessment and monitoring design of high cutting loess slope in heavy haul railway

  • Zhang, Qian;Gao, Yang;Zhang, Hai-xia;Xu, Fei;Li, Feng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.67-78
    • /
    • 2018
  • The stability of cutting slope influences the safety of railway operation, and how to identify the stability of the slope quickly and determine the rational monitoring plan is a pressing problem at present. In this study, the attribute recognition model of risk assessment for high cutting slope stability in the heavy haul railway is established based on attribute mathematics theory, followed by the consequent monitoring scheme design. Firstly, based on comprehensive analysis on the risk factors of heavy haul railway loess slope, collapsibility, tectonic feature, slope shape, rainfall, vegetation conditions, train speed are selected as the indexes of the risk assessment, and the grading criteria of each index is established. Meanwhile, the weights of the assessment indexes are determined by AHP judgment matrix. Secondly, The attribute measurement functions are given to compute attribute measurement of single index and synthetic attribute, and the attribute recognition model was used to assess the risk of a typical heavy haul railway loess slope, Finally, according to the risk assessment results, the monitoring content and method of this loess slope were determined to avoid geological disasters and ensure the security of the railway infrastructure. This attribute identification- risk assessment- monitoring design mode could provide an effective way for the risk assessment and control of heavy haul railway in the loess plateau.

Establishment of Evaluation System for Disaster Resilience Focusing on the Local Road under Complex Disaster (복합재해 발생 예상 시 지방도로 중심의 재난 레질리언스 평가체계 구축)

  • Kim, Young-Hwan;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.37-46
    • /
    • 2020
  • Although the importance of resilience is emerging around the world, the single definition of resilience related to natural disasters is not clear. The reason for this is that there is no specific definition of how the definition of resilience relates to similar terms such as vulnerability, recovery, adaptability, and sustainability. In addition, it is because each country and region have different geographic and geological characteristics, and each measurement index is different, just as typhoons, droughts, and earthquakes have different types of disasters. Therefore, in this study, the definition of resilience is reflected in the spatial characteristics of this study as the ability to recover from'complex disasters (concentrated heavy rain, landslides, earth and stone flows) occurring on local roads or on local roads adjacent to people or facilities. Defined. And it was divided into DRR: Disaster Resilience focusing on the Road. In addition, domestic and foreign literature surveys were conducted to derive road-centered disaster resilience factors, and a hierarchical structure was established and AHP survey was conducted to establish a DRR evaluation system. As a result of the analysis of the AHP survey, the weight of direct road disaster influencing factors (drainage facilities, protection facilities, etc.) located inside local roads was 0.742, and the weight of indirect road disaster influencing factors (population, property, etc.) located near local roads. Was found to be 0.258, indicating that the direct impact factor of road disaster was relatively higher than that of the indirect impact factor.

Cluster and information entropy analysis of acoustic emission during rock failure process

  • Zhang, Zhenghu;Hu, Lihua;Liu, Tiexin;Zheng, Hongchun;Tang, Chun'an
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • This study provided a new research perspective for processing and analyzing AE data to evaluate rock failure. Cluster method and information entropy theory were introduced to investigate temporal and spatial correlation of acoustic emission (AE) events during the rock failure process. Laboratory experiments of granite subjected to compression were carried out, accompanied by real-time acoustic emission monitoring. The cumulative length and dip angle curves of single links were fitted by different distribution models and distribution functions of link length and directionality were determined. Spatial scale and directionality of AE event distribution, which are characterized by two parameters, i.e., spatial correlation length and spatial correlation directionality, were studied with the normalized applied stress. The entropies of link length and link directionality were also discussed. The results show that the distribution of accumulative link length and directionality obeys Weibull distribution. Spatial correlation length shows an upward trend preceding rock failure, while there are no remarkable upward or downward trends in spatial correlation directionality. There are obvious downward trends in entropies of link length and directionality. This research could enrich mathematical methods for processing AE data and facilitate the early-warning of rock failure-related geological disasters.

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.

A Study for the Techniques and Applications of NIR Remote Sensing Based on Statical Analyses of NIR-related Papers (NIR 관련 논문 통계 분석에 의한 NIR 원격탐사의 기술 및 활용분야 고찰)

  • Baek, Won-Kyung;Park, Sung-Hwan;Jeong, Nam-Ki;Kwon, Sookyung;Jin, Won-Ji;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.889-900
    • /
    • 2017
  • In this study, we analyzed the paper about NIR (Near-Infrared) remote sensing data and systematically summarized the research and application fields of NIR. To do this, we conducted a case study on the use of NIR in domestic journals, and SCI journals in the field of technology development for the last 5 years. After selection, a total of 281 journals were analyzed. For the statistical analysis, the classification was divided into subclasses and the dominant research trends were examined. As a result, the researchers who wrote the papers made the highest score of about 60% or more at university. In the field of application, 50% of land, 30% of environment, and 11% of disaster were distributed on SCI journals. In Korea, on the other hand, 55% of land, 24% of environment and 10% of disasters were distributed. In addition, 17% of the national land management and 8% of the geological / natural resources. Disaster observation using NIR was used for landslide, drought, weather disaster and flood. In particular, meteorological disasters are a result of study on Asian dust. However, there were no results of forest fire detection in Korea. Considering the domestic situation, it seems necessary to carry out additional and active research on this. It is expected that this statistical analysis data will be used as basic data to help expand the NIR technology development and utilization field in Korea in the future.

A Statistical Mobilization Criterion for Debris-flow (통계 분석을 통한 산사태 토석류 전이규준 모델)

  • Yoon, Seok;Lee, Seung-Rae;Kang, Sin-Hang;Park, Do-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.59-69
    • /
    • 2015
  • Recently, landslide and debris-flow disasters caused by severe rain storms have frequently occurred. Many researches related to landslide susceptibility analysis and debris-flow hazard analysis have been conducted, but there are not many researches related to mobilization analysis for landslides transforming into debris-flow in slope areas. In this study, statistical analyses such as discriminant analysis and logistic regression analysis were conducted to develop a mobilization criterion using geomorphological and geological factors. Ten parameters of geomorphological and geological factors were used as independent variables, and 466 cases (228 non-mobilization cases and 238 mobilization cases) were investigated for the statistical analyses. First of all, Fisher's discriminant function was used for the mobilization criterion. It showed 91.6 percent in the accuracy of actual mobilization cases, but homogeneity condition of variance and covariance between non-mobilization and mobilization groups was not satisfied, and independent variables did not follow normal distribution, either. Second, binomial logistic analysis was conducted for the mobilization criterion. The result showed 92.3 percent in the accuracy of actual mobilization cases, and all assumptions for the logistic analysis were satisfied. Therefore, it can be concluded that the mobilization criterion for debris-flow using binomial logistic regression analysis can be effectively applied for the prediction of debris-flow hazard analysis.