• Title/Summary/Keyword: Geological Map

Search Result 256, Processing Time 0.032 seconds

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed (수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가)

  • Ko, Jee-Yeon;Lee, Jae-Sang;Kim, Choon-Song;Jeong, Ki-Yeol;Choi, Young-Dae;Yun, Eul-Soo;Park, Seong-Tae;Kang, Hwang-Won;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.138-146
    • /
    • 2006
  • To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

Geo-surface Environmental Changes and Reclaimed Amount Prediction Using Remote Sensing and Geographic Information System in the Siwha Area (원격탐사와 지리정보시스템을 이용한 시화지구 일대의 지표환경변화와 토공량 예측연구)

  • Yang, So-Yeon;Song, Moo-Young;Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.161-176
    • /
    • 1999
  • The objectives of this study are to analyze the changes of geo-surface topography in the Siwha embankment and the Ahsan city area by the image processing of Landsat Thematic Mapper data, and to estimate the reclaimed amount of the exposed tidal flat in the Siwha area using the GIS. False color composite, Tasseled cap, NVDI(normalized difference vegetation index), and supervised classification techniques were used to analyze the distribution of sediments and the aspect of topographical variations caused by artificial human actions. The total amount of the exposed tidal flat was estimated on the basis of the database snch as aerial photography, hydrographic chart, geological map, and scheme drawing in the Siwha area. The possible excavation regions for a seawall were predicted analyzing the supervised classification image of Landsat TM data. Tasseled cap images were used to observe the distribution of sediments. The difference of the NDVI images between spring and summer seasons indicates that deciduous and coniferous forests were distributed over the whole areas. The total fill-volume of the exposed Siwha tidal flat and the fill-volume of the construction planning seawall were calculated as $581,485,354\textrm{m}^3{\;}and{\;}3,387,360\textrm{m}^3$, respectively, from the digital terrain analysis. Daebu Island, Sunkam Island, and the part of Songsan-myeon were chosen as the cut area to make the seawall, and their cut-volumes were estimated as $5,229,576\textrm{m}^3,{\;}79,227,072\textrm{m}^3,{\;}and{\;}47,026,008\textrm{m}^3$, respectively. Therefore, the cut-volume of Daebu Island alone among three areas was sufficient to make the seawall.

  • PDF

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.