• Title/Summary/Keyword: GeojeHansan Bay

Search Result 17, Processing Time 0.023 seconds

Estimating the Carrying Capacity of a Coastal Bay for Oyster Culture -II. The Carrying Capacity of Geoie-Hansan Bay- (굴 양식수역의 환경용량 산정 -II. 거제 · 한산만의 환경용량-)

  • Park Jong Soo;Kim Hyung Chul;Choi Woo Jeung;Lee Won Chan;Kim Dong Myung;Koo Jun Ho;Park Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.408-416
    • /
    • 2002
  • A 3D hydrodynamic-ecological coupled model was applied to estimate carrying capacity in Geoje-Hansan Bay where is one of the most important oyster culturing grounds in Korea. We considered the carrying capacity as the difference between food supply to the oysters and food demand, considering monthly difference of the actual growth. The food supply to the system was determined from the results of the model simulation (tidal exchange and chlorophyll $\alpha$) over the culturing period from September to May of the following year. The food demand was estimated from the food concentration (chlorophyll $\alpha$) multiple the filtration rate of oysters that is considered monthly different growth rate of oysters and food concentration. The values of carrying capacity for the system varied from 6.1 ton/ha (minimum carrying capacity) in february to 14.91 ton/ha (maximum carrying capacity) in April of marketable size oysters (>4 g wet-tissue weight) depending on temporal variations in the food supply. The oyster production calculated from present facilities was 9 ton/ha in wet-tissue weight in Geoje-Hansan Bay. This value corresponded to $60\%$ of maximum carrying capacity of the system. The optimal carrying capacity without negatively affecting on oyster production was 5.5 ton/ha when calculated from annual statistic data and 6.1 ton/ha when determined by this study. These results suggest that it must be reduced $32\%$~$39\%$ of oyster facilities in the system.

BIOLOGICAL STUDIES ON OYSTER CULTURE(III) Oyster Growth Comparison between 4 Farms in Hansan - Geoje Bay and Density-dependent Relative Shell Growth (굴의 양식에 관한 생물학적 연구(III) 한산${\cdot}$거제만내 양식장별 굴의 성장비교와 부착밀도에 따른 패각의 상대성장)

  • YOO Sung Kyoo;PARK Kyung Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.207-212
    • /
    • 1980
  • Growth rates of oysters at four oyster farms in Hansan-Geoje Bay, near Chungmu, southern Korea, and density-dependent relative shell growth were investigated from November 1979 to May 1980 with the following results: The oysters at Sorang farm showed the best growth, the shell height in May 1980 attaining 10.10 cm, at Hwado 8.69cm and Songdo 8.57cm, all of which started growing in June 1979. At Chubong the oysters which started growing in July attained 8.6cm. The best grown oysters at Sorang shelved relatively slow growth in meat weight until February 1980, and then showed rapid growth upto May. At Hwado and Songdo they grew fast from December 1979 to February 1950, and from April to May 1980. Those at Chubong gradually increased growth rate from December 1979, and in April and May they showed rapid growth but still being smaller than the others. The ratio of meat weight to shell weight increased at Whado, Songdo and Chuhong after December 1979, but at Sorang it increased rapidly after February 1980. The ratio of shell length to shell height was 0.60 and up when the individual number of oysters attached to each cultch-disc(oyster shell) was less than 13, 0.56 to 0.60 when 14 to 25, and 0.51 or less when over 28, respectively.

  • PDF

Development of Bivalve Culture Management System based on GIS for Oyster Aquaculture in GeojeHansan Bay (거제한산만 굴 양식장에 대한 GIS 기반 어장관리시스템 개발)

  • Cho, Yoon-Sik;Hong, Sok-Jin;Kim, Hyung-Chul;Choi, Woo-Jeung;Lee, Won-Chan;Lee, Suk-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • Oyster production is playing an important role in domestic aquaculture, but facing some problems such as exports decrease, a slowdown in domestic demand and marine environmental deterioration. In order to obtain the suitable and sustainable oyster production, suitable sites selection is an important step in oyster aquaculture. This study was conducted to identify the suitable sites for lunging culture of oyster using Geographic Information System(GIS)-based multi-criteria evaluation methods. Most of the parameters were extracted by Inverse Distance Weighted(IDW) methods in GIS and eight parameters were grouped into two basic sub-models for oyster aquaculture, namely oyster growth sub-model(Sea Temperature, Salinity, Hydrodynamics, Chlorophyll-a) and environment sub-model(Bottom DO, TOC, Sediment AVS, Benthic Diversity). Suitability scores were ranked on a scale from 1(leased suitable) and 8(most suitable), and about 80.1% of the total potential area had the highest scores 5 and 6. These areas were shown to have the optimum condition for oyster culture in GeojeHansan Bay. This method to identify suitable sites for oyster culture may be used to develop bivalve culture management system for supporting a decision making.

Estimating the Carrying Capacity of a Coastal Bay for Oyster Culture -I . Estimating a Food Supply to Oysters Using an Eco-hydrodynamic Model in Geoie-Hansan Bay- (굴 양식수역의 환경용량 산정 -I. 생태계 모델을 이용한 거제 · 한산만 굴 먹이 공급량 추정)

  • Park Jong Soo;Kim Hyung Chul;Choi Woo Jeung;Lee Won Chan;Park Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.395-407
    • /
    • 2002
  • A 3D hydrodynamic-ecological coupled model was applied to estimate a food supply to oysters in Geoje-Hansan Bay where is one of the oyster culturing sites in Korea, In this study, the primary productivity (PP) was adopted as an index of food supply, and the spatial patterns of average chlorophyll a concentration during a culturing seasons from September to May of the following year were simulated by the model, The numerical result showed that PP was high in the inner part of the bay and the adjacent areas of Hwado island, but low in the outer. This result indicates that PP is essentially influenced by anthropogenic nutrient loadings in the system. The model was calibrated using the field data in May which is non culturing season of oysters and a simulated phytoplankton biomass agreed fairly well with the observed data ($R^{2}=0.70$, $RE=10.3\%$). The computed food supply varied from 0.19 to $1.27\;gC/m^{2}/day$ with a mean value of $0.62 gC/m^{2}/day$ from September to May. The highest value was showed in May ($1.27 gC/m^{2}/day$) and the lowest was in February ($0.19 gC/m^{2}/day$).

A Study on the Distribution of Summer Water Temperatures of the Central Coast of the Southern Sea of Korea Using Numerical Experimentation (수치실험을 이용한 남해 중부 연안의 하계 수온 분포 연구)

  • Choi, Min-Ho;Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • To understand the spatial-temporal distribution of seawater in Korea's South Sea, seawater movement and the distribution of water temperature has been analyzed using a hydrodynamic model (the Princeton Ocean Model). The directions of tidal currents were generally westward during flood tides and eastward during ebb tides. Northeastward Tsushima Warm Currents in the open sea, which is deeper than 50m were stronger than in coastal areas. Analysis of data from the hydrodynamic model showed that the water temperature in the semi-closed bay was relatively higher ($26{\sim}28^{\circ}C$) than in the open sea ($18{\sim}22^{\circ}C$). The exchange volume of semi-closed seawater was $10,331m^3/sec$ in Gwangyang Bay, $16,935m^3/sec$ in Yeosu-Gamag Bay and $13,454m^3/sec$ in Geoje-Hansan Bay. Therefore, it was shown that the lower seawater exchange volume is, the higher seawater temperature will be.

Establishment of Environmental Assessment using Sediment Total Organic Carbon and Macrobenthic Polychaete Community in Shellfish Farms (퇴적물 총유기탄소와 저서 다모류 군집을 이용한 패류양식장의 환경평가 기준설정)

  • Cho, Yoon-Sik;Lee, Won-Chan;Kim, Jeong-Bae;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.430-438
    • /
    • 2013
  • In this study, the seasonal field survey was conducted in Goseong Jaran Bay(22 stations), Geoje Hansan Bay(15 stations) and Jinhae Bay(18 stations). We analyzed the sediment environmental parameters(Chemical Oxygen Demand, Ignition Loss, Acid Volatile Sulfides, Total Organic Carbon) and biotic parameters of macrobenthic polychaetes(number of species, density, diversity, evenness). It had a good correlation between total organic carbon and polychaete diversity(R=0.61, P<0.01), and we made a decision them as representative environmental indices. As a result of that, regarding the criteria in the assessment of farm environment, we suggest concentrations of total organic carbon : Peak Point = 15 mg/g dry, Warning Point = 26 mg/g dry, Contaminated Point = 31 mg/g dry and polychaete diversity : ~2.6(Good), 2.6~2.1(Moderate), 2.1~1.2(Poor) and 1.2~(Bad). This could be a scientific basis to establish the environmental standards for fishery management.

EFFICIENCY OF ENERGY TRANSFER BY A POPULATION OF THE FARMED PACIFIC OYSTER, CRASSOSTREA GIGAS IN GEOJE-HANSAN BAY (거제${\cdot}$한산만 양식굴 Crassostrea gigas의 에너지 전환 효율)

  • KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.179-183
    • /
    • 1980
  • The efficiency of energy transfer by a population of the farmed pacific oyster, Crassostrea gigas was studied during culture period of 10 months July 1979-April 1980, in Geoje-Hansan Bay near Chungmu City. Energy use by the farmed oyster population was calculated from estimates of half-a-month unit age specific natural mortality rate and data on growth, gonad output, shell organic matter production and respiration. Total mortality during the culture period was estimated approximate $36\%$ from data on survivor individual number per cluster. Growth may be dual consisted of a curved line during the first half culture period (July-November) and a linear line in the later half period (December-April). The first half growth was approximated by the von Bertalanffy growth model; shell height, $SH=6.33\;(1-e^{0.2421(t+0.54)})$, where t is age in half-a-month unit. In the later half growth period shell height was related to t by SH=4.44+0.14t. Dry meat weight (DW) was related to shell height by log $DW=-2.2907+2.589{\cdot}log\;SH,\;(2, and/or log $DW=-5.8153+7.208{\cdot}log\;SH,\;(5. Size specific gonad output (G) as calculated by condition index of before and after the spawning season, was related to shell height by $G=0.0145+(3.95\times10^{-3}{\times}SH^{2.9861})$. Shell organic matter production (SO) was related to shell height by log $SO=-3.1884+2.527{\cdot}1og\;SH$. Size and temperature specific respiration rate (R) as determined in biotron system with controlled temperature, was related to dry meat weight and temperature (T) by log $R=(0.386T-0.5381)+(0.6409-0.0083T){\cdot}log\;DW$. The energy used in metabolism was calculated from size, temperature specific respiration and data on body composition. The calorie contents of oyster meat were estimated by bomb calorimetry based on nitrogen correction. The assimilation efficiency of the oyster estimated directly by a insoluble crude silicate method gave $55.5\%$. From the information presently available by other workers, the assimilation efficiency ranges between $40\%\;and\;70\%$. Twenty seven point four percent of the filtered food material expressed by energy value for oyster population was estimated to have been rejected as pseudofaeces : $17.2\%$ was passed as faeces; $35.04\%$ was respired and lost as heat; $0.38\%$ was bounded up in shell organics; $2.74\%$ was released as gonad output, $2.06\%$ was fell as meat reducing by mortality. The remaining $15.28\%$ was used as meat production. The net efficiency of energy transfer from assimilation to meat production (yield/assimilation) of a farm population of the oyster was estimated to be $28\%$ during culture period July 1979-April 1980. The gross efficiency of energy transfer from ingestion to meat production (yield/food filtered) is probably between $11\%\;and\;20\%$.

  • PDF