• Title/Summary/Keyword: Geoid Heights

Search Result 44, Processing Time 0.022 seconds

Evaluation of the new Earth Gravity Models with GPS-leveling data in South Korea (최신 지구중력장모델(EGMs)의 남한지역 적용 평가)

  • Lee Yong-Chang
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.99-104
    • /
    • 2006
  • The new gravity field combination models are expected to improve the knowledge of the Earth's global gravity field. This study evaluates eleven global gravity field models derived from gravimetry and altimetry surface data in a comparison with ground truth in South Korea. Geoid heights obtained from GPS and levelling in South Korea are compared with geoid heights from the models. The results show that the gravity satellites CHAMP, GRACE and LAGEOS plus gravimetry and altimetry surface data have led to an improvement in gravity field models. As expected, the new combination gravity field model which are EIGEN-CG03C and EIGEN-GL04C give better results than the predecessors widely used models(EGM96, OSU91A etc.).

  • PDF

Accuracy Improvement of GPS/Levelling using Least Square Collocation (Least Square Collocation에 의한 GPS/Leveling의 정확도 개선)

  • Yun Hong-Sic;Lee Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • This paper describes an accuracy analysis of newly developed gravimetric geoid and an improvement of developed geoid using GPS/Levelling data. We developed the KGEOID05 model corrected with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the least squares collocation technique based on second-order Markov covariance function. 373 GPS stations were used to model the correction term. The standard deviation of KGEOID05 is about 11 cm and it indicates that we can be determined accurate heights ($2{\sim}3\;cm$) when we made precise modelling using KGEOID05 and a few GPS measurements for the local area.

Accuracy Analysis of GNSS-derived Orthometric Height in Mountainous Areas

  • Lee, Jisun;Kwon, Jay Hyoun;Lee, Hungkyu;Park, Jong Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, GNSS (Global Navigation Satellite System)-derived orthometric height determination has been studied to improve the time and cost-effectiveness of traditional leveling surveying. However, the accuracy of this new survey method was evaluated when unknown points are located lower than control points. In this study, the accuracy of GNSS-derived orthometric height was examined using TPs (Triangulation Points) to verify the stability of surveying in mountainous areas. The GNSS survey data were obtained from Mungyeong, Unbong/Hadong, Uljin, and Jangseong. Three unknown points were surrounded by more than three UCPs (Unified Control Points) or BMs (Benchmarks) following the guideline for applying GNSS-derived orthometric height determination. A newly developed national geoid model, KNGeoid17 (Korean National Geoid 2017), has been applied for determining the orthometric height. In comparison with the official orthometric heights of the TPs, the heights of the unknown points in Mungyeong and Unbong/Hadong differ by more than 20 cm. On the other hand, TPs in Uljin and Jangseong show 15-16 cm of local bias with respect to the official products. Since the precision of official orthometric heights of TPs is known to be about 10 cm, these errors exceed the limit of the precision. Therefore, the official products should be checked to offer more reliable results to surveyors. As an alternative method of verifying accuracy, three different GNSS post-processing software were applied, and the results from each software were compared. The results showed that the differences in the whole test areas did not exceed 5 cm. Therefore, it was concluded that the precision of the GNSS-derived orthometric height was less than 5 cm, even though the unknown points were higher than the control points.

Accuracy Analysis of GPS Ellipsoidal Height Determination in Accordance with the Surveying Conditions (관측조건에 따른 GPS 타원체고 결정의 정확도 분석)

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • GNSS/Leveling technology makes it possible to get geoidal height geometrically using GNSS and Leveling technology. GNSS/Geoid technology refers to a technology for obtaining orthometric height by subtracting geoidal height achieved by Geoid technology from ellipsoidal height achieved by GNSS technology. The purpose of this study is to verify the accuracy of the ellipsoidal height determination in order to verify the accuracy of the orthometric height determination by the GNSS/Geoid technology. For the study, a test bed was selected in Kyungnam province and GNSS Static surveying was accomplished in the test bed and then the GNSS data was processed in accordance with various analysis conditions. So, it was verified the accuracy of the ellipsoidal heights determination in accordance with the surveying conditions under the GNSS Static surveying. According to the research results, to ensure the 3cm goal accuracy of the ellipsoidal height determination, it should be surveyed by four fixed points on the survey area periphery and more than two hours of the GNSS occupation time, And also, it was found that should be limited to a baseline distance of 20km under the GNSS Static surveying.

Accuracy Analysis of Orthometric Heights Based on GNSS Static Surveying (GNSS 정지측량을 통한 표고 산출 정확도 분석)

  • Shin, Gwang-Soo;Han, Joong-Hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.527-537
    • /
    • 2014
  • In 2013, NGII(National Geographic Information Institute) has developed and provided the KNGeoid13(Korean National Geoid Model 2013) to support the fundamental computation of GNSS-derived orthometric height. In this study, the adjusted ellipsoidal height, the sum of geoidal height and height by the leveling, is applied to calculate the GNSS-derived orthometric height without the local bias, based on GNSS static surveying and KNGeoid13. The mean of errors in GNSS-derived orthometric heights could be verified with the leveling data, which was actually less than 0.5 cm with using the adjusted ellipsoidal heights, but 3 cm by calculating differences between ellipsoidal heights and geoidal heights. By analyze the accuracy of GNSS-derived orthometric height depending on the duration of observation, we could realized 95% of data shows less than 4 cm accuracy, when the GNSS survey conducting for 4 hours spread over two days, but while the case of GNSS survey conducting for 4 hours and 2 hours respectively, resulted in 95% of data less than 5cm level of accuracy. Also, if the ambiguity is fixed, less than 10cm of accuracy could be obtained at 95% of data for only 30 minutes GNSS survey over a day. Following the study, we expected that the height determination by GNSS and geoid models can be used in the public benchmark surveying.

Boresight Calibration Comparison Using Geoid Models (지오이드 모델에 따른 Boresight 검정 비교)

  • So, Jae Kyeong;Park, Young Su;Won, Jae Ho;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.291-297
    • /
    • 2016
  • Direct georeferencing has become widespread in the field of digital aerial photogrammetry; as a result, the boresight calibration has become an essential component of the procedure to calculating exterior orientation parameters of aerial photographs accurately. During this procedure, a reference is used for the height of the geoid model, and the calibration results can appear different depending on the geoid model. The exterior orientation parameters calculated through direct georeferencing during boresight calibration may have varied values according to the corresponding geoid model. With that in mind, the effects of the geoid model on the boresight calibration were analyzed through three different cases. The geoid models used in the experiments were EGM96, EGM08, and KNGeoid14, and, through boresight calibration, the datum shift and boresight angle for each model was computed. After calculating the exterior orientation of each case, the GCP (Ground Control Point) was verified using the DPW (Digital Photogrammetry Workstation). In each case, results in the boresight calibration acquired through the geoid model demonstrated a difference in the Z datum, the exterior orientation heights Z, and the rotation Ω and Φ. After utilizing the DPW in each case and comparing it to the GCP, the difference in accuracy in accordance with the geoid model was found to be within 3cm, and it was concluded that the geoid model did not have a significant impact on boresight calibration.

The Fundamental Study of Height Determination Using GPS Leveling Technique (GLT에 의한 정밀 표고결정의 기초적 연구)

  • 강인준;장용구;곽영주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2001
  • When determining a three dimensional position for engineering purposes, we can use the GPS survey to find position. According to the enhancement of precision for domestic Geoid model, the positional accuracy of GPS about precise method of vertical position has been also increased. But by considering Geoid undulation, it is difficult to measure GPS-derived elevations. Because Geoid undulation has changed little in local sites, GPS-derived elevations are similar to orthometric height. By ignoring Geoid undulation, it is possible to measure GLT-derived elevations at the local. small construction sites. GLT(GPS Leveling Technique) provides a method for computing orthometric heights. GLT processes the data more rapidly than conventional measurement devices. We only considered the weight factors affecting accuracy between the points. That is, the GPS procedures to produce satisfactory elevation accuracy depends on the method of observations, receivers and conditions of the local environment. A comparison was performed between the GPS survey using Geoid model and GLT at a part within Pusan National University and construction model sites in South Korea. And the writers proved the GPS surveying is efficient in positioning accuracy, time, and cost on a construction sites.

  • PDF

Accuracy Analysis of GNSS-derived Orthometric Heights on the Leveling Loop Disconnected Area

  • Jung, Sung Chae;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To compensate for the shortcomings of spirit leveling, research on the determination of GNSS (Global Navigation Satellite System)-derived orthometric height has been actively carried out. However, most analyses were primarily performed inland. In this study, the influences of the arrangement of control points, observation duration, and geoid model on the accuracy of the GNSS-derived orthometric height have been analyzed to suggest the proper method to apply the determination of GNSS-derived orthometric height to the leveling loop disconnected area. As a result, it was found that two known points located near the unknown points need to be fixed in the leveling loop disconnected area. Further, 3 cm level of accuracy can be achieved if the GNSS survey is performed over two days, for four hours per day. In terms of the geoid model, the latest national geoid model should be applied rather than the EGM08 (Earth Gravitational Model 2008) to minimize regional bias and increase accuracy. Future research is necessary to apply the determination of the GNSS-derived orthometric height technique as a method to connect with the islands because the vertical reference system used inland and that used for the islands in Korea are still different.

Determination of the Optimal Height using the Simplex Algorithm in Network-RTK Surveying (Network-RTK측량에서 심플렉스해법을 이용한 최적표고 결정)

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • GNSS/Geoid positioning technology allows orthometric height determination using both the geoidal height calculated from geoid model and the ellipsoidal height achieved by GNSS survey. In this study, Network-RTK surveying was performed through the Benchmarks in the study area to analyze the possibility of height positioning of the Network-RTK. And the orthometric heights were calculated by applying the Korean national geoid model KNGeoid13 according to the condition of with site calibration and without site calibration and the results were compared. Simplex algorithm was adopted for liner programming in this study and the heights of all Benchmarks were calculated in both case of applying site calibration and does not applying site calibration. The results were compared to Benchmark official height of the National Geographic Information Institute. The results showed that the average value of the height difference was 0.060m, and the standard deviation was 0.072m in Network-RTK without site calibration and the average value of the height difference was 0.040m, and the standard deviation was 0.047m in Network-RTK with the application of the site calibration. With linearization method to obtain the optimal solution for observations it showed that the height determination within 0.033m was available in GNSS Network-RTK positioning.