• Title/Summary/Keyword: Geoid Height

Search Result 60, Processing Time 0.027 seconds

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

A Study on the Geoid Modeling by Gravimetric Methods and Methods of Satellite Geodesy (중력학적 방법 및 위성측지 방법에 의한 지오이드 모델링에 관한 연구)

  • 이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.359-367
    • /
    • 2000
  • This paper suggests that coefficients models of the Earth's gravitational potential can be used to calculate height anomalies which are then reduced to the geoid undulation to determine more precise geoid undulation. The potential coefficients and modified coefficients of EGM96 and KODEM33 digital elevation model in and around the Korean peninsula were used for this study. The magnitude of height anomaly computed in this study reached 0.025 m and the mean vaule showed -0.015 m. In this study, geometrical geoid undulation was derived from GPS/Leveling data for evaluating the precisely computed geoid undulation. In comparison with geometric and gravimetric geoid undulations, mean value and standard deviation of the differences showed 0.0114 m and 0.2817 m respectively and it showed the improvement of results.

  • PDF

Geoid Heights of Provinces in South KOREA by Earth Gravitational Models (지구중력장모형에 따른 국내 지역별 지오이드고)

  • Lee, Yong-Chang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.274-280
    • /
    • 2008
  • The new high order Earth's gravity Model(EGM2008) are expected to improve the application about the Earth's global gravity field. The objectives of this research are to present characteristics on the geoid heights of provinces in South KOREA which calculated from the height anomalies by Earth Gravity Models. For this, seven EGMs (EGM2008<2,190>, EGM2008<360>, EGM96, EIGEN-GL04C, EIGEN-CG03C, EIGEN-GL04S1, and ITG-Grace02S) selected. Geoid heights of fifty BM check points by GPS/levelling are compared with those by NORI-05 model and seven EGMs. And also, geoid heights of 30"$\times$30" grid points in land(sixes blocks ; $1^{\circ}\times1^{\circ}$ sampled) and sea (four blocks ; $1^{\circ}\times1^{\circ}$ sampled) areas of South KOREA by EGM2008 are compared with those by NORI-05 and six EGMs. The results show that geoid heights obtained from EGM2008(2,190) of NGA displayed the nearest results to those by GPS/levelling.

Accuracy Analysis of GNSS-derived Orthometric Heights on the Leveling Loop Disconnected Area

  • Jung, Sung Chae;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To compensate for the shortcomings of spirit leveling, research on the determination of GNSS (Global Navigation Satellite System)-derived orthometric height has been actively carried out. However, most analyses were primarily performed inland. In this study, the influences of the arrangement of control points, observation duration, and geoid model on the accuracy of the GNSS-derived orthometric height have been analyzed to suggest the proper method to apply the determination of GNSS-derived orthometric height to the leveling loop disconnected area. As a result, it was found that two known points located near the unknown points need to be fixed in the leveling loop disconnected area. Further, 3 cm level of accuracy can be achieved if the GNSS survey is performed over two days, for four hours per day. In terms of the geoid model, the latest national geoid model should be applied rather than the EGM08 (Earth Gravitational Model 2008) to minimize regional bias and increase accuracy. Future research is necessary to apply the determination of the GNSS-derived orthometric height technique as a method to connect with the islands because the vertical reference system used inland and that used for the islands in Korea are still different.

A study on the reduction of the distance on reference ellipsoid to the distance on geoid (타원체상 거리의 지오이드면상 거리로의 보정에 관한 연구)

  • 김형태;김용일;어양담;김창재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.137-143
    • /
    • 1999
  • The straight spatial distance or geodesic distance on WGS84 ellipsoid measured by GPS should be reduced on geoid to be used in Korean Geodetic System. The factors for this reduction are geoidal height and mean radius of the earth. On this study the effects of these factors on reducing distance were analyzed and the result showed that mean geoidal height should be multiplied by $1.6\times{10}^{-7}$ per unit distance for reducing geodesic distance on reference ellipsoid to that on geoid. Condsidering that the geoidal height on Bessel ellipsoid in Korea is -45 m in northeast and -75 m in middle west. It also showed that the difference of geodesic distance between on reference ellipsoid and on geoid is about 7-12 mm per km.

  • PDF

A Study on Geoid Height of Provinces in South Korea by Terrain correction of Earth Gravitational Models (EGMs의 지형보정에 따른 국내 지역별 지오이드고 연구)

  • Lee, yong-chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.942-946
    • /
    • 2007
  • The new gravity field combination models are expected to improve the knowledge of the Earth's global gravity field. This study evaluates six global gravity field models derived from gravimetry and altimetry surface data in a comparison with ground truth in South Korea. For calculating a more accurate estimate of the geoid heights from the height anomalies, the terrain corrections due to the terrain masses over geoid have considered, the model for the topographic correction is a spherical harmonic expansion of the ETOPO2 DTM model. Geoid heights obtained from GPS and levelling in land area of South Korea are compared with those from the EGMs. The results show that EIGEN-CG03C EGM and EIGEN-GL04C EGM displayed the nearest results to GPS/leveling, and also confirmed the importance of terrain correction for geoid height in case of the uneven topography.

  • PDF

Geoid Height Estimation Using Rail-road Reference Points (철도기준점을 활용한 지오이드고의 추정)

  • Heo, Joon;Song, Yeong-Sun;Kim, Sung-hoon;Moon, Cheung-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.499-505
    • /
    • 2009
  • This paper evaluated applicability of railroad reference points for determinating geoid heights. For this research, reference points on the Honam express raildroad which contain ellipsoid heights estimated by GPS/Leveling and orthometric heights by leveling were used. Geoid heights were calculated uisng orthometric and ellipsoid heights of 360 railroad reference points, and the RMSE's with respect to different intervals of reference points were analysed which were induced by interpolation methods. The results showed that no significant difference of RMSE's among interpolation. methods. RMSE's of 0-4km interval of reference points were determined within 2cm and 5-8km were within 3cm. Also, this research confirmed that GPS leveling with Geoid model is not auurate enough to be used for railroad surveying as yet.

Marine Geoid around Korean Peninsula (한반도 주변 해양 지오이드)

  • Kim, Hyung-Ki;Choi, Byung-Ho;Yun, Hong-Sic;Kim, Kyeong-Ok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.621-629
    • /
    • 2008
  • Procedures involved in the refinement of the regional geoid for the area encompassing the Korean peninsula and the East Sea are described, and the computational results are provided. A comparison between the geoid height data, the mean sea surface height and the final product of the refinement work is provided and analyzed. The regional marine geoid thus refined seems to have a better resolution, in terms of its correlation with the bathymetry, and shows the bottom features in a more detailed manner when compared with previously used procedures. The general pattern of the computed geoid profile matches reasonably well with the existing studies, where the correlations between the refined regional marine geoid and the bathymetry are (1) 0.44 for the area $117{\sim}142.5^{\circ}E/24{\sim}52^{\circ}N$ and (2) 0.47 for the area $127{\sim}142.5^{\circ}E/32{\sim}50^{\circ}N$ in the East Sea respectively.

Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea (한국의 잔여지오이드고 모델링을 위한 FFT 및 LSC 방법 비교)

  • Lee, Dong Ha;Yun, Hong Sic;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.323-334
    • /
    • 2011
  • In this study, we performed the residual geoid modeling using the FFT and LSC methods in context of application of R-R (Remove and Restore) technique as a general technique for gravimetric geoid model in order to propose the effective way of geoid determination in Korea. For this, a number of data compiled for residual geoid modeling by the multi-band spherical FFT method with Stoke's formula and LSC method as known as statistical method. The geometric geoidal heights obtained from 503 GPS/Levelling data were used for inducing the various elements and proper computation process which should be considered for improving the accuracy of residual geoid modeling. Finally, we statistically compared the results of residual geoid heights between FFT and LSC methods and reviewed then the proper way of residual geoid modeling to the region of Korea. As the results of comparison, LSC method is not suitable for residual geoid modeling in Korea due to the noise and lack of gravity observations and the effects of local characteristics, while FFT method by applying Stokes' integral with proper cap size and modified kernel which provides the better accuracy of residual geoid heights up to 10 cm more than those of LSC method.

A Study on the Acquisition of Geoidal Height by Means of Global Positioning System (GPS에 의한 지형의 높이정보 획득에 관한 연구)

  • Kang, Joon-Mook;Lee, Yong-Chang;Park, Pil-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.159-169
    • /
    • 1993
  • As Global Positioning System is able to provide 24-hour all weather surveying capability and high precision survey in three dimension, expected that the extensive use of GPS to support geophysics, geophysics, millitary and time correction etc. But in order to use the GPS results effectively, we have to solve problems about coordinates transformation relating the WGS84 to Bessel Datums and development of the accurate geoid undulation model. In this paper, we derive polynomial model equations about geoid undulation around local area(longitude $126^{\circ}{\sim}129^{\circ}$, latitude $36^{\circ}{\sim}37^{\circ}$) in Korea by GPS/Leveling method, also study the geoidal height calcaulation methods supplemented by Earth Gravitational Models (OSU981A, OSU86F).

  • PDF