• Title/Summary/Keyword: Geodesic Active Contour

Search Result 12, Processing Time 0.022 seconds

Software Implementation of Welding Bead Defect Detection using Sensor and Image Data (센서 및 영상데이터를 이용한 용접 비드 불량검사 소프트웨어 구현)

  • Lee, Jae Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.185-192
    • /
    • 2021
  • Various methods have been proposed to determine the defect detection of welding bead, and recently sensor data and image data inspection have been steadily announced. There are advantages that sensor data inspection is highly accurate, and two-dimensional-based image data inspection is able to determine the position of the welding bead. However, when analyzing only with sensor data, it is difficult to determine whether the welding has been performed at the correct position. On the other hand, the image data inspection does not have high accuracy due to noise and measurement errors. In this paper, we propose a method that can complement the shortcomings of each inspection method and increase its advantages to improve accuracy and speed up inspection by fusing sensor data inspection which are average current, average volt, and mixed gas data, and image data inspection methods and is implemented as software. In addition, it is intended to allow users to conveniently and intuitively analyze and grasp the results by performing analysis using a graphical user interface(GUI) and checking the data and inspection results used for the inspection. Sensor inspection is performed using the characteristics of each sensor data, and image data is inspected by applying a morphology geodesic active contour algorithm. The experimental results showed 98% accuracy, and when performing the inspection on the four image data, and sensor data the inspection time was about 1.9 seconds, indicating the performance of software that can be used as a real-time inspector in the welding process.

3D Film Image Inspection Based on the Width of Optimized Height of Histogram (히스토그램의 최적 높이의 폭에 기반한 3차원 필름 영상 검사)

  • Jae-Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • In order to classify 3D film images as right or wrong, it is necessary to detect the pattern in a 3D film image. However, if the contrast of the pixels in the 3D film image is low, it is not easy to classify as the right and wrong 3D film images because the pattern in the image might not be clear. In this paper, we propose a method of classifying 3D film images as right or wrong by comparing the width at a specific frequency of each histogram after obtaining the histogram. Since, it is classified using the width of the histogram, the analysis process is not complicated. From the experiment, the histograms of right and wrong 3D film images were distinctly different, and the proposed algorithm reflects these features, and showed that all 3D film images were accurately classified at a specific frequency of the histogram. The performance of the proposed algorithm was verified to be the best through the comparison test with the other methods such as image subtraction, otsu thresholding, canny edge detection, morphological geodesic active contour, and support vector machines, and it was shown that excellent classification accuracy could be obtained without detecting the patterns in 3D film images.