• Title/Summary/Keyword: Geochemical data

Search Result 256, Processing Time 0.023 seconds

Geochemical baseline mapping for geochemical hazard assessment (지구화학적 재해 평가를 위한 지화학도 작성 및 기준치 설정)

  • 신성천;염승준;황상기
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.215-233
    • /
    • 2000
  • The national geochemical baseline mapping project has been conducted since 1996 to establish a quantitative assessment system for geochemical hazards in natural environments. The geochemical image maps have been edited for thirty-six elements(i.e., 10 major oxides and 26 trace elements) in light sediments, finer fraction than 150 $\mu$m, collected from first- to second-order streams(totally 11,000) over five provinces in the western half(ca. 45,000 km$^2$) of Korea. Natural background values of the elements were given for different geological environments. Based on the statistics, geochemical baselines were newly obtained for a quantitative hazard assessment on toxicity of heavy metals and deficiency of essential nutrients. Some chosen examples of geochemical hazards are presented based on new geochemical image maps and related baseline data.

  • PDF

Prediction of the Gold-silver Deposits from Geochemical Maps - Applications to the Bayesian Geostatistics and Decision Tree Techniques (지화학자료를 이용한 금${\cdot}$은 광산의 배태 예상지역 추정-베이시안 지구통계학과 의사나무 결정기법의 활용)

  • Hwang, Sang-Gi;Lee, Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.663-673
    • /
    • 2005
  • This study investigates the relationship between the geochemical maps and the gold-silver deposit locations. Geochemical maps of 21 elements, which are published by KIGAM, locations of gold-silver deposits, and 1:1,000,000 scale geological map of Korea are utilized far this investigation. Pixel size of the basic geochemical maps is 250m and these data are resampled in 1km spacing for the statistical analyses. Relationship between the mine location and the geochemical data are investigated using bayesian statistics and decision tree algorithms. For the bayesian statistics, each geochemical maps are reclassified by percentile divisions which divides the data by 5, 25, 50, 75, 95, and $100\%$ data groups. Number of mine locations in these divisions are counted and the probabilities are calculated. Posterior probabilities of each pixel are calculated using the probability of 21 geochemical maps and the geological map. A prediction map of the mining locations is made by plotting the posterior probability. The input parameters for the decision tree construction are 21 geochemical elements and lithology, and the output parameters are 5 types of mines (Ag/Au, Cu, Fe, Pb/Zn, W) and absence of the mine. The locations for the absence of the mine are selected by resampling the overall area by 1 km spacing and eliminating my resampled points, which is in 750m distance from mine locations. A prediction map of each mine area is produced by applying the decision tree to every pixels. The prediction by Bayesian method is slightly better than the decision tree. However both prediction maps show reasonable match with the input mine locations. We interpret that such match indicate the rules produced by both methods are reasonable and therefore the geochemical data has strong relations with the mine locations. This implies that the geochemical rules could be used as background values oi mine locations, therefore could be used for evaluation of mine contamination. Bayesian statistics indicated that the probability of Au/Ag deposit increases as CaO, Cu, MgO, MnO, Pb and Li increases, and Zr decreases.

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Application of Indicator Geostatistics for Probabilistic Uncertainty and Risk Analyses of Geochemical Data (지화학 자료의 확률론적 불확실성 및 위험성 분석을 위한 지시자 지구통계학의 응용)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.301-312
    • /
    • 2010
  • Geochemical data have been regarded as one of the important environmental variables in the environmental management. Since they are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction for further analysis. The main objective of this paper is to exemplify how indicator geostatistics can be effectively applied to geochemical data processing for providing decision-supporting information as well as spatial distribution of the geochemical data. A whole geostatistical analysis framework, which includes probabilistic uncertainty modeling, classification and risk analysis, was illustrated through a case study of cadmium mapping. A conditional cumulative distribution function (ccdf) was first modeled by indicator kriging, and then e-type estimates and conditional variance were computed for spatial distribution of cadmium and quantitative uncertainty measures, respectively. Two different classification criteria such as a probability thresholding and an attribute thresholding were applied to delineate contaminated and safe areas. Finally, additional sampling locations were extracted from the coefficient of variation that accounts for both the conditional variance and the difference between attribute values and thresholding values. It is suggested that the indicator geostatistical framework illustrated in this study be a useful tool for analyzing any environmental variables including geochemical data for decision-making in the presence of uncertainty.

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

Multivariate Analysis of the Geochemical Data of Tin-bearing Granitoids in the Sangdong and the Ulchin Areas, Korea (상동 및 울진지역 주석 화강암질암의 지구화학 자료에 대한 다변량해석)

  • Chon, Hyo-Taek;Cheong, Young-Wook;Son, Chang-Il
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 1994
  • Tin mineralizations in South Korea have been found only in the Ulchin and Sangdong areas. They appear to be in close spatial association with the Wangpiri granitoid in the UlChin area, and the Nonggeori and Naedeogri granites in the Sangdong area. However, previous works have revealed that there are considerable differences in geological setting, mineralogical and geochemical compositions among these granitoids concerned. The roles of discriminant and multiple regression analysis have been examed to establish geochemical differences among the tin-granitoids and to identify elements relating to tin mineralizations. The data set used in this study consists of 60 observations with 29 elements which are cited from pre-existing publications. A stepwise discriminant analysis determined the group of variables that differentiate between samples from four training sets; Buncheon, Wangpiri, Nonggeori and Naedeogri granitoids. These granitoids were most effectively discriminated on the basis of major elements FeO, CaO and $P_2O_5$ and also by the trace elements Rb and Zr. Results of the multiple regression analysis shows that the level of Sn in granitoids depends positively on ones of MnO, Rb and FeO and negatively $P_2O_5$. Graphical representation of discriminant scores on sampling locations greatly aid recognition of differences in the geochemical characteristics in terms of spatial distribution of granitoids examed. The application of the discriminant analysis provides a potential means of identifying and comparing geochemical characteristics.

  • PDF

Geochemical Occurrence Characteristics of Geogenic Heavy Metals in Korea Evaluated Using Geochemical Map Data (전국 지화학도 자료를 이용한 지질기원 중금속의 지화학적 발생특성)

  • Ahn, Joo Sung;Youm, Seung-Jun;Cho, Yong-Chan;Yim, Gil-Jae;Ji, Sang-Woo;Lee, Jung-Hwa;Lee, Pyeong-Koo;Lee, Jeong-Ho;Shin, Seong-Cheon
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • As environmental criteria items are increased or strengthened, cases of heavy metal contamination by geogenic origin are increasing, and the need to distinguish between natural and anthropogenic origins in soil or groundwater exceeding the standard is increasing. In this study, geochemical occurrences of geogenic heavy metals were identified through statistical processing of the national geochemical map data and evaluation of geochemical characteristics of regions with high geoaccumulation indices. Cobalt, Cr, Cu, Ni, Pb, V, and Zn were targeted for which the national geochemical maps were prepared, and Co, Cr, Ni, and V derived from ultrabasic or ultramafic rocks were classified as factor 1. Copper, Pb and Zn of non-ferrous sulfide origin were classified as factor 2. In particular, enrichment of heavy metals by factor 1 occurs mainly in the serpentine distribution areas of the Chungcheong region, and there is a risk of contamination in neighboring areas. In the case of factor 2, geogenic occurrence is concerned not only in non-ferrous metal mineralization areas such as Taebacksan and Gyeongnam mineralization zones, but also in Au-Ag mineralization areas distributed nationwide.

Trace Element and Mineral Chemistry of the Cretaceous Granites in the Southern Mungyeong Area (문경남부일대(聞慶南部一帶)에 분포(分布)하는 백악기(白堊紀) 화강암류(花崗岩類)의 미량원소(微量元素) 및 광물화학(鑛物化學))

  • Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.379-391
    • /
    • 1991
  • The studied Cretaceous granties are widely distributed at the southern Mungyeong area in the southwestern part of Ogcheon Fold Belt. From the mineralogical and geochemical compositions, it is suggested that they show the characteristics of I-type and magnetite-series and formed under the conditions of high oxygen fugacity. The mineral chemistry of plagioclase, alkali feldspar and biotite in the granites by EMPA, was revealed as albite to oligoclase, microcline to microcline perthite and orthoclase perthite, and annite compositions, respectively. The granites have the distribution patterns of enriched LREE and depleted HREE, and show Eu negative anomalies suggesting mainly due to the feldspar fractionation in the residual magma. The geochemical data of Eu, EU/$^*Eu$, Sm and Gd suggest that the granites of the area have more abundant alkali feldspar crystallization than plagioclase. From the geochemical characteristics of Sr/Ba, La/Sm vs. Ce/Yb and other trace element evidences, the granites were the late stage products of differentiation and fractionated from a homogeneous parental granitic magma.

  • PDF

Geochemical Composition of the Continental Crust in Korean Peninsula (한반도 지각암류의 지구화학적 특성)

  • Lee, Seung-Gu;Kim, Dong-Yeon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.113-128
    • /
    • 2012
  • The chemical composition of the continental crust play an important role in understanding of crustal formation and evolution and quantifying other processes taking place within continental crust. We summarized geochemical data reported in the previous literature for the crustal rocks in the Korean Peninsula and divided their chemical composition into geologic time scale. In the variation diagram normalized by average composition of the upper crustal rocks, the geochemical characteristics of the upper crust during Triassic period is different from those of the upper crustal rocks after Jurassic period or before Precambrian. However, the geochemical characteristics of the Jurassic and Precambrian period are similar each other. Our summarized data indicate that the source material of Triassic upper crust may be different from that of Jurassic or Precambrian upper crust.

Geochemical Study of Dyke Swarms, SE Korea (한반도 남동부일원의 암맥군에 관한 지화학적 연구)

  • Kim, Jin-Seop;Kim, Jong-Sun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.182-199
    • /
    • 2002
  • We attempted to show the evolution of the magma and the geochemical characteristics of dikes and dike swarms by using the petrographic and geochemical data from 287 dikes, SE Korea. The dikes can be divided into mafic, intermediate, and felsic dikes in the field. And each of them is subdivided into three groups, two groups, and two groups, respectively. The group (I) among the mafic dikes most pervasively occurs and are distributed in both sides of the Yeonil Tectonic Line (YIL), which petrographic and geochemical characteristics are the same. These facts thus, strongly support the results of the previous studies which showed that they were intruded contemporaneously and that YTL was a main tectonic line which restricted the crustal clockwise rotation during the Early Miocene. The geochemical characteristics are discriminated according to the seven groups divided petrographically. The mafic, intermediate and felsic dikes belong to basalt and basaltic andesite, andesite and facile, and rhyolite, respectively, and the magmas mostly belong to calc-alkaline series. The geochemical data indicate that there were the fractional crystallizations of olivine, clinopyroxene, and plagioclase in the mafic dikes. And the content of characteristic elements and tectonic discrimination diagrams show that the dikes were formed from the magma related to the subduction of plate and that the tectonic setting was related to orogenic volcanic arc.