• Title/Summary/Keyword: GeoEye

Search Result 20, Processing Time 0.032 seconds

Fusion Techniques Comparison of GeoEye-1 Imagery

  • Kim, Yong-Hyun;Kim, Yong-Il;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.517-529
    • /
    • 2009
  • Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

Comparative Analysis of Classification Accuracy for Calculating Cropland Areas by using Satellite Images (위성영상별 경지면적 분류 정확도 비교 분석)

  • Jo, Myung-Hee;Kim, Sung-Jae;Kim, Dong-Young;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • Recently many developed countries have used satellite images for classifying cropland areas to reduce time and efforts put into field survey. Korea also has used satellite images for the same purpose since KOMPSAT-2 was successfully launched and operated in 2006, but still far way to go in order to achieve the required accuracy from the products. This study evaluated the accuracy of the calculated croplands by using the objected classification method with various satellite images including ASTER, Spot-5, Rapid eye, Quickbird-2, Geo eye-1. Also, their usability and effectiveness for the cropland survey were verified by comparing with field survey data. As results. Geo eye-1 and Rapid eye showed higher accuracy to calculate the paddy field areas while Geo eye-1 and Quickbird-2 showed higher accuracy to calculate the upland field areas.

Accuracy Investigation of RPC-based Block Adjustment Using High Resolution Satellite Images GeoEye-1 and WorldView-2 (고해상도 위성영상 GeoEye-1과 WorldView-2의 RPC 블록조정모델 정확도 분석)

  • Choi, Sun-Yong;Kang, Jun-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • We investigated the accuracy in three dimensional geo-positioning derived by four high resolution satellite images acquired by two different sensors using the vendor-provided rational polynomial coefficients(RPC) based block adjustment in this research. We used two in-track stereo pairs of GeoEye-1 and WorldView-2 satellite and DGPS surveying data. In this experiment, we analyzed accuracies of RPC block adjustment models of two kinds of homogeneous stereo pairs, four kinds of heterogeneous stereo pairs, three 3 triplet image pairs, and one quadruplet image pair separately. The result shows that the accuracies of the models are nearly same. The accuracy without any GCPs reaches about CEP(90) 2.3m and LEP(90) 2.5m and the accuracy with single GCP is about CEP(90) 0.3m and LEP(90) 0.5m.

Generation of Topographic Map Using GeoEye-1 Satellite Imagery for Construction of the Jangbogo Antarctic Station (GeoEye-1 위성영상을 이용한 남극의 장보고기지 건설을 위한 지형도 제작)

  • Kim, Eui-Myoung;Hong, Chang-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • Construction of the Jangbogo antarctic station was planned, and it requires detailed information on topography of the area around the station. The purpose of this research is to generate the topographic map to construct the Jangbogo antarctic station using the satellite image. To do this, surveying and pre-test of equipment were conducted. In addition, for sensor modeling of the GeoEye-1 satellite image, RPC-bias correction was done, and it showed that at least two control points are required. In generating the map, a 1/2,500 scale was deemed suitable in consideration of resolution of the image and the fact that supplementary topographic surveying would be impossible. In order to provide detailed information on the topography around the Jangbogo station, the digital elevation model based on image matching was created, and compared with GPS-RTK data, accuracy of vertical location about 0.6m was exhibited.

Automated Improvement of RapidEye 1-B Geo-referencing Accuracy Using 1:25,000 Digital Maps (1:25,000 수치지도를 이용한 RapidEye 위성영상의 좌표등록 정확도 자동 향상)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.505-513
    • /
    • 2014
  • The RapidEye can acquire the 6.5m spatial resolution satellite imagery with the high temporal resolution on each day, based on its constellation of five satellites. The image products are available in two processing levels of Basic 1B and Ortho 3A. The Basic 1B image have radiometric and sensor corrections and include RPCs (Rational Polynomial Coefficients) data. In Korea, the geometric accuracy of RapidEye imagery can be improved, based on the scaled national digital maps that had been built. In this paper, we present the fully automated procedures to georegister the 1B data using 1:25,000 digital maps. Those layers of map are selected if the layers appear well in the RapidEye image, and then the selected layers are RPCs-projected into the RapidEye 1B space for generating vector images. The automated edge-based matching between the vector image and RapidEye improves the accuracy of RPCs. The experimental results showed the accuracy improvement from 2.8 to 0.8 pixels in RMSE when compared to the maps.

The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model (딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가)

  • Park, Jeongmook;Sim, Woodam;Kim, Kyoungmin;Lim, Joongbin;Lee, Jung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1407-1422
    • /
    • 2022
  • This study was conducted to classify tree species and assess the classification accuracy, using SE-Inception, a classification-based deep learning model. The input images of the dataset used Worldview-3 and GeoEye-1 images, and the size of the input images was divided into 10 × 10 m, 30 × 30 m, and 50 × 50 m to compare and evaluate the accuracy of classification of tree species. The label data was divided into five tree species (Pinus densiflora, Pinus koraiensis, Larix kaempferi, Abies holophylla Maxim. and Quercus) by visually interpreting the divided image, and then labeling was performed manually. The dataset constructed a total of 2,429 images, of which about 85% was used as learning data and about 15% as verification data. As a result of classification using the deep learning model, the overall accuracy of up to 78% was achieved when using the Worldview-3 image, the accuracy of up to 84% when using the GeoEye-1 image, and the classification accuracy was high performance. In particular, Quercus showed high accuracy of more than 85% in F1 regardless of the input image size, but trees with similar spectral characteristics such as Pinus densiflora and Pinus koraiensis had many errors. Therefore, there may be limitations in extracting feature amount only with spectral information of satellite images, and classification accuracy may be improved by using images containing various pattern information such as vegetation index and Gray-Level Co-occurrence Matrix (GLCM).

The Effects of the Balance Training Program on the Excercise Performance and Injuries (정적균형훈련이 운동수행력 및 상해발생에 미치는 영향(탄성을 이용한))

  • Park, Sung-Hark
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.3
    • /
    • pp.14-27
    • /
    • 2004
  • This study approaches the effects of Balance Training on excercise performance and the prevention from the injuries caused by excercise. The subjects of the Balance Training program are female exercise beginners and the research period covers 8 weeks from January 10 to March 7, 2003. The research objects are 19 female golf beginners in 30s to 40s, who live in Seoul or Seongnam in Gyeonggi province and have played golf less than 6 months. The programs of the Balance Training and exercise performance were conducted to an 11 experimental group among the 19 research objects at the same time, and only the exercise performance program was applied to an 8 control group for 8 weeks. Before and after 8 weeks' application of the research programs to each group, the research subjects were examined, especially the components of their bodies, the balance and the performance capability were measured both before and after the test. The frequency of injuries by exercise was measured after the test, and the difference of the frequency was compared with the frequency before exercise. First, the experimental group, in a measurement of balance, showed that SN, MB, SAr and SAg of static balance decreased in a situation of MEO, MEC, GEO, GEC, TBEO, TBO, FHEO, FEO(p <0.05), but the control group increased. Second, the analysis on the change of exercise performance indicated better improvement in distance, ball speed, and accuracy of the experimental group than the control group(p<0.05). Third, the experience of injuries showed that there were 2 injuries in the experimental group and 11 injuries in the control group. The injured parts were 2 cases in the hands and fingers of the experimental group, and 1 case in the shoulder, 4 in the elbows, 4 in the hands and fingers and 2 in the lumber of the control group. From the above-mentioned results, it is recognized that the Balance Training program improved the exercise performance of female golf beginners and had good effects on the prevention from injuries. Accordingly, if this program is applied to sports-beginners, it will contribute to the improvement of the public health.

  • PDF

Analysis of Land Uses in the Nakdong River Floodplain Using RapidEye Imagery and LiDAR DEM (RapidEye 영상과 LiDAR DEM을 이용한 낙동강 범람원 내 토지 이용 현황 분석)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.189-199
    • /
    • 2014
  • Floodplain is a flat plain between levees and rivers. This paper suggests a methodology for analyzing the land uses in the Nakdong River floodplain using the RapidEye imagery and the given LiDAR(LIght Detection And Ranging) DEM(Digital Elevation Models). First, the levee boundaries are generated using the LiDAR DEM, and the area of the floodplain is extracted from the given RapidEye imagery. The land uses in the floodplain are identified in the extracted RapidEye imagery by the ISODATA(Iterative Self-Organizing Data Analysis Technique Analysis) clustering. The overall accuracy of the identified land uses by the ISODATA clustering is 91%. Analysis of the identified land uses in the floodplain is implemented by counting the number of the pixels constituting the land cover clusters. The results of this research shows that the area of the river occupies 46%, the area of the bare soil occupies 36%, the area of the marsh occupies 11%, and the area of the grass occupies 7% in the identified floodplain.

Direct Geo-referencing for Laser Mapping System

  • Kim, Seong-Baek;Lee, Seung-yong;Kim, Min-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.423-427
    • /
    • 2002
  • Contrary to the traditional text-based information, 4S(GIS,GNSS,SIIS,ITS) information can contribute to the citizen's welfare in upcoming era. Recently, GSIS(Geo-Spatial Information System) has been applied and stressed out in various fields. As analyzed the data from GSIS arena, the position information of objects and targets is crucial and critical. Therefore, several methods of getting and knowing position are proposed and developed. From this perspective, Position collection and processing are the heart of 4S technology. We develop 4S-Van that enables real-time acquisition of position and attribute information and accurate image data in remote site. In this study, the configuration of 4S-Van equipped with GPS, INS, CCD and eye-safe laser scanner is shown and the merits of DGPS/INS integration approach for geo-referencing is briefly discussed. The algorithm of DGPS/INS integration fur determination of six parameters of motion is eccential in the 4S-Van to avoid or simplify the complicated computation such as photogrammetric triangulation. 4S-Van has the application of Laser-Mobile Mapping System for three-dimensional data acquisition that merges the texture information from CCD camera. The technique is also applied in the fields of virtual reality, car navigation, computer games, planning and management, city transportation, mobile communication, etc.

  • PDF