• Title/Summary/Keyword: Geo-spatial

Search Result 670, Processing Time 0.069 seconds

Recent Trends in U.S. Ocean Policy and the Direction of Ocean Environment Conservation Policy (미국 해양정책의 최근 동향과 해양환경 보전정책 방향)

  • KIM, HYUNG SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.211-228
    • /
    • 2022
  • Recent trends in U.S. ocean policy were briefly reviewed through the keywords in the documents from the three consecutive administrative offices of U.S. government since 2010. Many keywords was unchanged since 2010 implying that the confirm foundation of US ocean policy is not easily shaken. Among the administration-specific main drivers, emphases on Coastal and Marine Spatial Planning in 2010, Ocean Mapping in 2019, and the 2021 goal of conserving 30% by 2030 may profoundly affect the directions of U.S. ocean environment conservation policy. Decadal trends and implications in main key words of U.S. ocean policy as are reflected from the documents produced by the above three administrative offices were also shown to affect future perspectives of global ocean environment conservation policy as well as the corresponding Korean policies.

Grouping Method Based Query Range Density for Efficient Operation Sharing of Spatial Range Query (공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법)

  • Lim, Jung-Hyeun;Shin, Soong-Sun;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Kyung-Bae;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.348-351
    • /
    • 2009
  • 유비쿼터스 사회를 실현하는 핵심기술인 u-GIS 공간정보 기술은 데이터 스트림 처리 시스템(Data Stream Management System)과 지리정보 시스템(Geography Information System)이 결합된 플랫폼인 u-GIS DSMS를 요구한다. u-GIS DSMS는 GeoSeonsor에서 수집되는 센서 테이터와 GIS의 공간정보 데이터를 결합하여 처리하는 공간영역질의가 다수 요구된다. 이런 공간영역질의들은 특정 지역에 밀집하게 등록되는 경향이 있으며, 유사한 프리디킷을 가질 가능성이 높다. 이러한 특징은 공간영역질의가 특정 지역에 밀집되면 다수의 비슷한 연산들이 반복적으로 처리하기 때문에 시스템 성능이 저하 될 것이다. 이를 해결하기 위해 영역질의 색인기법 연구가 활발히 진행되고 있다. 그러나 기존의 VCR-Index와 CQI-Index 기법은 질의영역을 셀 구조나 가상구조로 분할하여 처리하기 때문에 자원 및 연산을 공유 할 수 없어 질의 처리 속도가 현저히 저하되기 때문에 대량의 공간영역질의 처리에는 부적합하다. 그래서 본 논문에서는 공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법을 제안한다. 이 기법은 질의영역의 밀집도를 이용하여 공간영역질의들을 그룹화 후 색인을 구성한다. 색인된 영역들의 데이터는 단일 큐로 구성 후 질의들의 프리디킷을 분석하여 자원 및 연산 공유기법을 통해 기존의 기법보다 처리 속도 향상 및 메모리 사용을 감소시켰다.

Evaluation of Accuracy of the Physics Based Distributed Hydrologic Model Using VfloTM Model (VfloTM 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가)

  • Hong, Jun Bum;Kim, Byung Sik;Yoon, Seok Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.613-622
    • /
    • 2006
  • In this study, a fully distributed physical-based rainfall-runoff model called Vflo$^{TM}$ is applied to Junglang-cheon basin for simulating runoff. Geo-spatial data are used to parameterize the model to account for the characteristics of soils, landuse/cover, and topograph. 300m resolution DEM is used to compute slope and drainage network connectivity. Spatially distributed rainfall data is interpolated by ordinary kriging method. In this study, hydrograph from HEC-HMS and Vflo$^{TM}$ without/with calibration of parameters was compared to evaluate the accuracy of rainfall-runoff model From the results, a fully distributed physical-based rainfall-runoff model reproduce the peak time and shape of hydrograph much better than HEC-HMS.

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.

Assessment of the Relationship between Air Temperature and TOA Brightness Temperature in Different Seasons Using Landsat-8 TIRS (Landsat-8 위성의 열적외 센서를 활용한 대기온도와 밝기온도의 계절별 상관관계 분석)

  • CHOUNG, Yun-Jae;CHUNG, Youn-In;CHOI, Soo-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.68-79
    • /
    • 2018
  • In general, Top Of Atmosphere(TOA) brightness temperature is closely related to air temperature. Brightness temperature can be derived from the Thermal Infra-Red Sensors (TIRS) of the earth observation satellites such as the Landsat series. The TIRS instrument of the Landsat-8 satellite collects the two spectral bands (Bands 10 and 11) that measure brightness temperature. In this research, the relationship between the air temperature data measured by the weather stations in Seoul, South Korea and the brightness temperature data separately derived from Bands 10 and 11 of the Landsat-8 satellite were assessed in the different seasons through the correlation analysis. The statistical results led to the following conclusions. First, brightness temperature is closely related to air temperature in order of Spring, Autumn, Winter and Summer. Second, when air temperature increases, brightness temperature also increases in Spring, Autumn and Winter but decreases in Summer. Third, Band 10 has a closer relationship to air temperature than Band 11.

An Automated OpenGIS-based Tool Development for Flood Inundation Mapping and its Applications in Jeju Hancheon (OpenGIS 기반 홍수범람지도 작성 자동화 툴 개발 및 제주 한천 적용 연구)

  • Kim, Kyungdong;Kim, Taeeun;Kim, Dongsu;Yang, Sungkee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.691-702
    • /
    • 2019
  • Flood inundation map has various important roles in terms of municipal planning, timely dam operation, economic levee design, and building flood forecasting systems. Considering that the riparian areas adjacent to national rivers with high potential flood vulnerability conventionally imposed special cares to justify applications of recently available two- or three-dimensional flood inundation numerical models on top of digital elevation models of dense spatial resolution such as LiDAR irrespective of their high costs. On the contrary, local streams usually could not have benefits from recent technological advances, instead they inevitably have relied upon time-consuming manual drawings or have accepted DEMs with poor resolutions or inaccurate 1D numerical models for producing inundation maps due mainly to limited budgets and suitable techniques. In order to efficiently and cost-effectively provide a series of flood inundation maps dedicatedly for the local streams, this study proposed an OpenGIS-based flood mapping tool named Open Flood Mapper (OFM). The spatial accuracy of flood inundation map derived from the OFM was validated throughout comparison with an inundation trace map acquired after typhoon Nari in Hancheon basin located in Jeju Island. Also, a series of inundation maps from the OFM were comprehensively investigated to track the burst of flood in the extreme flood events.

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

Microzonation on Site-specific Seismic Response at a Model Area in Seoul Using GIS (GIS를 이용한 서울 시범 지역에서의 부지고유 지진 응답의 정밀구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Jang, Eui-Ryong;Chung, Choong-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.139-150
    • /
    • 2007
  • As computer technology has been rapidly advanced, geographic information system (GIS) is recently used in many disciplines. In this study, for a model area in Seoul, seismic hazard potential relating to site effects, which are influenced by the subsurface geotechnical conditions, was estimated using the GIS tool. The distribution of pre-existing borehole drilling data in Seoul metropolitan area was examined for the regional estimation of site-specific seismic responses at the model area. Spatial geo-layers across the entire model area were predicted by constructing a GIS-based geotechnical information system (GTIS). A microzonation of site period $(T_G)$ for estimating site-specific seismic responses at the model area was performed within the GTIS. The spatial microzoning map of $T_G$ indicated seismic vulnerability of two- to four-storied buildings in the model area. Furthermore, a site classification map for determining the design ground motion was established based on the $T_G$ within the GTIS. This informed that most of location in the model area was categorized into current site classes C and D. This seismic microzonation framework for the model area could be applicable particularly in the entire Seoul metropolitan area based on the pre-existing borehole data.

A Development Plan for Integrated Inventory Management System to Support Decision Making for Disaster Response (재난대응 의사결정 지원을 위한 인벤토리 통합 관리 시스템 구축 방안)

  • Choi, Soo-Young;Gang, Su-Myung;Kim, Jin-Man;Oh, Eun-Ho;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2014
  • Social overhead capital (SOC) facilities are being threatened continuously by abnormal climate events that are increasing globally. For disaster response, rapid decision making on evacuation routes and other matters is critical. For this purpose, spatiotemporal information that combine data on disasters and SOC facilities needs to be utilized. This information is separately collected by government agencies and public organizations, and is not managed in an integrated manner. For rapid disaster response, an integrated management of separately collected disaster data and the creation of such information as the safety and damages on SOC facilities are required. To achieve this goal, it is essential to build inventories that integrate all the related information to support decision making indispensable for disaster response. In this study, a development plan for an integrated inventory management system based on the management and connection of inventories to support rapid decision making for disaster response is proposed. This system can collect and standardize data related to disasters and SOC facilities that are being managed separately and provide integrated information in line with the needs of users. The proposed system can be used as a decision making tool for proactive disaster response.

A Study on Prototype Model for Mesoscopic Evacuation Using Cube Avenue Simulation Model (Cube Avenue 시뮬레이션 모델을 이용한 중규모 재난대피 프로토타입 모델 연구)

  • Sin, Heung Gweon;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.33-41
    • /
    • 2013
  • Recently, the number of disasters has been seriously increasing. The total damages by the natural or man-made disasters during the past years resulted in tremendous fatalities and recovery costs. It is necessary to have efficient emergency evacuation management which is concerned with identifying evacuation route, and the estimation of evacuation and clearance times. An emergency evacuation model is important in identifying critical locations, and developing various evacuation strategies. In that existing evacuation models have focused on route analysis for indoor evacuation, there are only a few models for areawide emergency evacuation analysis. Therefore, we developed a mesoscopic model by using Cube Avenue and performed evacuation simulation, targeting road network in City of Fargo, North Dakota. Consequently, a mesoscopic model developed in this study is used to carry out dynamic analysis using network and input variable of existing travel demand model. The results of this study show that the model is an appropriate tool for areawide emergency evacuation analysis to save time and cost. Henceforth, the results of this study can be applied to develop a disaster evacuation model which can be used for a variety of disaster simulation and evaluation based on scenarios in the local metropolitan area.