• Title/Summary/Keyword: Geo-reference Data

Search Result 48, Processing Time 0.024 seconds

3D Building Reconstruction and Visualization by Clustering Airborne LiDAR Data and Roof Shape Analysis

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.507-516
    • /
    • 2007
  • Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.

Comparative Analysis of Algorithm for Calculation of Absorbed Shortwave Radiation at Surface Using Satellite Date (위성 자료를 이용한 지표면 흡수단파복사 산출 알고리즘들의 비교 분석)

  • Park, Hye-In;Lee, Kyu-Tae;Zo, Il-Sung;Kim, Bu-Yo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.925-939
    • /
    • 2018
  • Absorbed shortwave radiation at the surface is an important component of energy analysis among the atmosphere, land, and ocean. In this study, the absorbed shortwave radiation was calculated using a radiation model and surface broadband albedo data for application to Geostationary Earth Orbit Korea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A). And the results (GWNU algorithm) were compared with CERES data and calculation results using pyranometer and MODIS (Moderate Resolution Imaging Spectroradiometer) data to be selected as the reference absorbed shortwave radiation. This GWNU algorithm was also compared with the physical and statistical algorithms of GOSE-R ABI and two algorithms (Li et al., 1993; Kim and Jeong, 2016) using regression equation. As a result, the absorbed shortwave radiation calculated by GWNU algorithm was more accurate than the values calculated by the other algorithms. However, if the problem about computing time and accuracy of albedo data arise when absorbed shortwave radiation is calculated by GWNU algorithm, then the empirical algorithms explained above should be used with GWNU algorithm.

Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine - With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field - (폐석탄광 주변 지구화학적 환경의 중금속 오염 평가 - 강릉탄전 임곡천 일대를 중심으로 -)

  • Chon, Hyo-Taek;Kim, Ju-Yong;Choi, Si-Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 1998
  • The Imgok Creek is located in the Gangreung coal field, which has been known that sulfides are more abundant than other coal fields in Korea, and it has been severly contaminated by acid mine drainage (AMD) discharging from the abandoned coal mines, such as the Youngdong, the Dongduk and the Waryong coal mines. The purposes of this study are to synthetically assess the contamination of natural water, stream sediment and cultivated soils, and to provide the basic data for AMD treatment. Geochemical samples were collected in December, 1996 (dry season) and April, 1997 (after three day's rainfall). TDS of the Youngdong mine water was remarkably higher than those of other mine waters. In the Imgok Creek, concentrations of most elements, except Fe decreased with distance by dilution caused by the inflow of uncontaminated tributaries. From the results of NAMDI and $I_{geo}$ calculation, the Youngdong coal mine was the main contamination source of the study area. Groundwater pollution was not yet confirmed in this study and the paddy and farm land soils were also not yet contaminated by mining activity based on the pollution index ranging from 0.27 to 0.47.

  • PDF

Geocoding of the Free Stereo Mosaic Image Generated from Video Sequences (비디오 프레임 영상으로부터 제작된 자유 입체 모자이크 영상의 실좌표 등록)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Kim, Jung-Sub;Koh, Jin-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • The free-stereo mosaics image without GPS/INS and ground control data can be generated by using relative orientation parameters on the 3D model coordinate system. Its origin is located in one reference frame image. A 3D coordinate calculated by conjugate points on the free-stereo mosaic images is represented on the 3D model coordinate system. For determining 3D coordinate on the 3D absolute coordinate system utilizing conjugate points on the free-stereo mosaic images, transformation methodology is required for transforming 3D model coordinate into 3D absolute coordinate. Generally, the 3D similarity transformation is used for transforming each other 3D coordinates. Error of 3D model coordinates used in the free-stereo mosaic images is non-linearly increased according to distance from 3D model coordinate and origin point. For this reason, 3D model coordinates used in the free-stereo mosaic images are difficult to transform into 3D absolute coordinates by using linear transformation. Therefore, methodology for transforming nonlinear 3D model coordinate into 3D absolute coordinate is needed. Also methodology for resampling the free-stereo mosaic image to the geo-stereo mosaic image is needed for overlapping digital map on absolute coordinate and stereo mosaic images. In this paper, we propose a 3D non-linear transformation for converting 3D model coordinate in the free-stereo mosaic image to 3D absolute coordinate, and a 2D non-linear transformation based on 3D non-linear transformation converting the free-stereo mosaic image to the geo-stereo mosaic image.

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

DEVELOPMENT OF iRTK (iNVERTED REAL-TIME KINEMATIC) SYSTEM BASED ON THE INTERNET (인터넷 기반 iRTK 시스템 개발)

  • Joh, Jeong-Ho;Park, Jong-Uk;Choi, Byung-Kyu;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2003
  • We demonstrated positioning accuracy of iRTK system, which has been developed by Korea Astronomy Observatory, using a low-price GPS receiver. Each four different baseline positioning tests using the iRTK system, we certified 1-3 meters level positioning accuracy of the iRTK system. While the iRTK is similar to conventional RTK at coverage and accuracy, the iRTK positioning carried out from data processing center. And also, the iRTK system has no limit of data communication coverage because of using wire/wireless Internet. But the iRTK system has a weakness of short available coverage within 5km. Therefore we discussed a plan to adopt VRS (Virtual Reference System) as completion of the iRTK system preparing nation-wide iRTK service in near future.

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

A Study on Mitigation Plan of Urban Heat Island Phenomenon Using Landsat Time Series Imagery - Focusing on Cheongna International City - (시계열 Landsat 위성영상을 활용한 도시 열섬 현상 완화 방안에 관한 연구 - 청라 국제도시를 중심으로 -)

  • BAEK, Seon-Uk;KIM, Dong-Hyun;KIM, Hung-Soo;GU, Bon-Yup;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.1-16
    • /
    • 2022
  • Areas developed through land reclamation projects have huge economic advantages in terms of supplying lands that can be used for farmlands, urban areas and etc., however have relatively small areas of grasslands and densely located buildings compared to inland cities. Hence, an urban heat island is occurring in these areas due to this characteristic, and in particular, the urban heat island in Cheongna International City is getting serious. In this study, the urban heat island in Cheongna International City was evaluated and analyzed by classified into the three periods after the reclamation project: farmland(2001-2008), development(2009-2013) and artificial grassland(2014-2020). The land cover map and Landsat time-series imagery were utilized for measuring the differences of the land surface temperatures between the urbanized areas and the grassland/forest areas in Cheongna International City. The statistical results showed that the differences in the land surface temperature between these areas were calculated to be at most 0℃ during the period of farmland, at most 3.60℃ during the period of development, and at most 2.51℃ during the period of grassland. This study proved that the urban heat island phenomenon increased when the urbanized areas increased, and the urban heat island phenomenon decreased when the artificial grassland areas increased in Cheongna International City where the reclamation project was carried out. The statistical results derived through this research can be used as the reference data for identifying the urban heat island problem in urban planning and establishing the reduction plan.

A STUDY ON THE GENERATION OF EO STANDARD IMAGE PRODUCTS: SPOT

  • JUNG HYUNG-SUP;KANG MYUNG-HO;LEE YONG-WOONG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • In this study, the concept and techniques to generate the level lA, lB and 2A image products have been reviewed. In particular, radiometric and geometric corrections and bands registration used to generate level lA, lB and 2A products have been focused in this study. Radiometric correction is performed to take into account radiometric gain and offset calculated by compensating the detector response non-uniformity. And, in order to compensate satellite altitude, attitude, skew effects, earth rotation and earth curvature, some geometric parameters for geometric corrections are computed and applied. Bands registration process using the matching function between a geometry, which is called 'reference geometry', and another one which is corresponds to the image to be registered is applied to images in case of multi-spectral imaging mode. In order to generate level-lA image products, a simple radiometric processing is applied to a level-0 image. Level-lB image has the same radiometry correction as a level-lA image, but is also issued from some geometric corrections in order to compensate skew effects, Earth rotation effects and spectral misregistration. Level-2A image is generated using some geo-referencing parameters computed by ephemeris data, orbit attitudes and sensor angles. Level lA image is tested by visual analysis. The difference between distances calculated level 1 B image and distances of real coordinate is tested. Level 2A image is tested Using checking points.

  • PDF