• Title/Summary/Keyword: Geo-location

Search Result 243, Processing Time 0.023 seconds

The Construction Work Method of Mixed Coal Ash in Ash Pond to Recycle as a Horizontal Drain Material (수평배수재로 재활용하는 회사장 혼합석탄재의 시공 방안)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • The design for horizontal drain layer on soft ground starts from the decision that the material could be used or not, by verifying material condition in permeability of horizontal drain material according to the weight percent of the dry soil retained on #200 sieve. In the next step of the design, we estimate the thickness of horizontal drain layer to confirm trafficability of heavy machinery in construction work. Successively, the long-term functionality for good drainage of horizontal drain layer is checked and if needed, some means are considered. In this study, the system to recycle mixed coal ash in ash pond successfully as a horizontal drain material on soft ground is presented through the process and the result of its practical construction work. Namely, the pact is confirmed that mixed coal ash in ash pond should be sorted out by sieve screen to a certain extent and the remainders of this mixed coal ash on sieve openings be recycled, because the amount of finer particles than $75{\mu}m$ contained in mixed coal ash in ash pond is quite massive and irregular depending on the coal power plant or the location in same ash pond. In order to sort at large scale in situ, the dimension of a sieve squre hole and the sort-out method, etc. should be decided before the sort-out process. And, it is described that we need to manufacture classifier to sort out mixed coal ash in ash pond, too.

Building a Satellite Image Rinsed Blog System Using PPGIS (People Participatory GIS) (국민참여형 위성영상 블로그 시스템 구축)

  • Lee, Ki-Hwan;Lee, Dong-Cheon;Park, Seok-Ho;Kim, Il;Shin, Sang-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2007
  • This paper introduce a satellite image based blog system built by JeonNam local province. Main goals of this system are as follows : (1)Overcome the static aspect of traditional Web-GIS, (2)Providing a geoUCC generating platform by combining multimedia technology and GIS in a single web environment, (3)Building a two-way Web-GIS through user's participation, (4)Creating a new communicative way between government and citizen by using this system. As a result of the system building, this system enables users to create his/her own UCC(User Created Contents) on high-resolution satellite image and enables users to share his/her own UCC with other system using Web2.0 technology.

Effects of Hydrogeomorphology and Watershed Land Cover on Water Quality in Korean Reservoirs (우리나라 저수지 수질에 미치는 수문지형 및 유역 토지피복의 영향)

  • Cho, Hyunsuk;Cho, Hyung-Jin;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • In order to study the water quality status and its causal environmental factors, the water quality variables of chemical oxygen demand (COD), chlorophyll a (Chl a), Total phosphorus (TP), and total nitrogen (TN), the hydrogeomorphologic variables of water level fluctuation, total water storage, dam elevation, watershed area, and shoreline development index, and the land cover variables of forest, agricultural area, and urbanized area in the watershed were investigated in total 73 reservoirs with various operational purposes, water level fluctuation and geographical distribution in South Korea. The water quality was more eutrophic in the reservoirs of the more urbanized and agricultural area in the watershed, the low altitude, the narrow water level fluctuation, the narrowed watershed area, and the more circular shape. In terms of the purposes of reservoir operation, the reservoirs for agricultural irrigation were more eutrophic than the reservoirs for flood control. The results of the variable selection and path analysis showed that COD determined by Chl a and TP was directly affected by water level fluctuation and the shoreline development of the reservoirs. TP was directly affected by the urbanized area of the watershed which was related to the elevation of the reservoir. TP was also influenced by the water level fluctuation and the shoreline development. In conclusion, the eutrophication of the reservoirs in Korea would be influenced by the land use of the watershed, hydrological and geographical characteristics of the reservoir, water level fluctuation by the anthropogenic management according to the reservoir operation purpose, and the location of the reservoirs.

A Study on the Behaviour of a Single Pile to Adjacent Tunnelling Conducted in the Lateral Direction of the Pile (단독말뚝의 측면으로 시공되는 터널에 의한 말뚝의 거동 연구)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2011
  • Three-dimensional(3D) numerical analyses have been conducted to study the behaviour of a single pile to adjacent tunnelling conducted in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the axial force on the pile. In particular, the shear stress transfer mechanism along the pile related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement between the pile and the soil next to the pile during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Downward shear stress developed above the tunnel springline (Z/L=0.0-0.7~0.8), while upward shear stress is mobilised below the tunnel springline (Z/L=0.7~0.8-1.0) resulting in compressive force on the pile, where Z is the pile location and L is the pile length. Maximum compressive force of about $0.475P_a$ was developed on the pile after completion of tunnel advancement, where $P_a$ is the allowable pile capacity. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.

Characteristics of the Segregation Sedimentation for Dredged Soil Depending on Fines Content (세립분 함량에 따른 준설토의 분리 퇴적 특성)

  • Park, Minchul;Lee, Jongkyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • Dredged and reclaimed ground in progress at the West Coast has a high content of coarse particles. There will be different behaviors depending on the location of outlet and engineering properties of soil when its ground is dredged by a pump. Therefore, the experiments were conducted that were manufactured about the chamber equipment of length 2,650mm, width 770mm, height 735mm, experimented step filling method and water content about 300%, 500% and 700% respectively with SM and ML samples in order to realize segregating sediment characteristics of dredged ground with changing much fine. With results of analysis, ML sample by higher initial water content was reached to the period of complete sedimentation and coefficient of sedimentation consolidation increased with increases of diffusion distance. SM samples showed behavior of coarse soil with diffusion distance 120cm, diffusion distance of more than 120cm showed a similar tendency with ML sample under the influence of fines. In ML sample, it could be also found that lower depth and the more increasing diffusion distance increase in percentage of sieve #200 but water content decreases. In SM sample, it could be also found that coarse soil was piled at near the diffusion distance zone but fine soil was piled at the far diffusion distance zone and prominent difference showed between percentage of sieve #200 and water content(%) by boundary point 120cm~160cm of both samples. Also, shear strength was expressed ML-maximum 2.97kPa, SM-maximum 10.2kPa with diffusion distance.

A Study on Non-destructive Stress Measurement of Steel Plate using a Magnetic Anisotropy Sensor (자기이방성센서를 이용한 강판의 비파괴 응력 계측에 관한 연구)

  • Kim, Daesung;Moon, Hongduk;Yoo, Jihyeung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.71-77
    • /
    • 2011
  • Recently, non-destructive stress measurement method using magnetic anisotropy sensor has been applied to the construction site such as steel bridges and steel pipes. In addition, steel rib used in the tunnel construction site was found to be possible to measure the stress by non-destructive method. In this study, steel loading experiments using magnetic anisotropy sensor developed in Japan and strain gauges were conducted to derive stress sensitivity curve for domestic steel SS400. Also, additional steel loading experiments and numerical analysis were performed for evaluation of applicability for non-destructive stress measurement method using magnetic anisotropy sensor. As a result of this study, stress sensitivity curves for domestic steel SS400 were derived using output voltage measured by magnetic anisotropy sensor and average of stress measured by strain gauges depending on the measurement location. And as a result of comparing additional steel loading experiments with the numerical analysis, error level of magnetic anisotropy sensor is around 20MPa. When considering the level of the yield stress(245MPa) of steel, in case of using magnetic anisotropy sensor in order to determine the stress status of steel, it has sufficient accuracy in engineering. Especially, magnetic anisotropy sensor can easily identify the current state of stress which considers residual stress at steel structure that stress measurement sensor is not installed, so we found that magnetic anisotropy sensor can be applied at maintenance of steel structure conveniently.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

Appropriateness Evaluation of Train Vibration Evaluation Method Considering Vibration Levels of Retaining Wall Adjacent to Railway Tunnels (철도터널과 인접한 흙막이 가시설의 진동 수준을 고려한 열차진동 평가방법의 적정성 평가)

  • Donghee Woo;Yeongjin Lee;Yongjae Song;Kangil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.5-13
    • /
    • 2023
  • With the recent increase in development projects centered on urban areas, the construction of building structures is increasing in areas adjacent to the urban railway operation section. In this case, since ground vibration is generated by the train in operation and affects the adjacent structure, the building structure needs appropriate vibration reduction against train vibration generated at the adjacent location from the desing phase. However, the vibration levels calculated vary depending on the train vibration evaluation method, which means that the implementation of vibration reduction may vary depending on the train vibration evaluation method. Therefore, this study calculated the vibration level according to ground conditions, tunnel depth and separation distance between vibration sources and adjacent structures using numerical analysis and train vibration evaluation methods, and compared them to designning phase. And the appropriate separation distance between the tunnel and the adjacent structure was evaluated by comparing the vibration level with the allowable standards. As a result of the study, the Ungar and Bender evaluation method is evaluated as the most appropriate among the train vibration evaluation methods, and the appropriate separation distance between the tunnel and the adjacent structure is evaluated to be more than 4.5D.

Analysis of Dynamic Behavior on Group Piles in Two-Layered Sandy Ground (이층지반에 설치된 무리말뚝의 동적 거동 분석)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.51-58
    • /
    • 2023
  • The dynamic behavior of the group piles supporting the superstructure in an earthquake is influenced by different complex dynamic mechanisms by the inertia force of the superstructure and the kinematic force of the ground. In an earthquake, The dynamic p-y curve is used to analyze the dynamic behavior of the pile foundation in consideration of the interaction of the ground, pile foundation, and superstructure due to the inertia force and the kinematic force. Most of the research has been conducted in order to confirm the dynamic p-y curve of the pile foundation by applying to the pile foundation installed on the single layered ground consisting of sand and clay, but the research for the multiple layered ground is insufficient. In this study, 1g shaking table tests were conducted to analyze the effect of the strata ratio of the top and bottom ground of the two layered sandy ground which has different relative densities on the dynamic behavior of group piles supporting the superstructure. The result shows that the maximum acceleration in the ground, the pile cap, and the superstructure increases as the strata ratio increases, and the location of the maximum bending moment of the pile foundation is changed. In addition, it was confirmed that the slope of the dynamic p-y curve of the pile foundation increased and decreased according to the strata ratio.

Comparison of Machine Learning Models to Predict the Occurrence of Ground Subsidence According to the Characteristics of Sewer (하수관로 특성에 따른 지반함몰 발생 예측을 위한 기계학습 모델 비교)

  • Lee, Sungyeol;Kim, Jinyoung;Kang, Jaemo;Baek, Wonjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.5-10
    • /
    • 2022
  • Recently, ground subsidence has been continuously occurring in downtown areas, threatening the safety of citizens. Various underground facilities such as water and sewage pipelines and communication pipelines are buried under the road. It is reported that the cause of ground subsidence is the deterioration of various facilities and the reckless development of the underground. In particular, it is known that the biggest cause of ground subsidence is the aging of sewage pipelines. As an existing study related to this, several representative factors of sewage pipelines were selected and a study to predict the risk of ground subsidence through statistical analysis has been conducted. In this study, a data SET was constructed using the characteristics of OO city's sewage pipe characteristics and ground subsidence data, The data set constructed from the characteristics of the sewage pipe of OO city and the location of the ground subsidence was used. The goal of this study was to present a classification model for the occurrence of ground subsidence according to the characteristics of sewage pipes through machine learning. In addition, the importance of each sewage pipe characteristic affecting the ground subsidence was calculated.