• Title/Summary/Keyword: Geo/Geo/1/1

Search Result 1,467, Processing Time 0.028 seconds

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

The Analysis of Lateral Movement at the Top of Retaining Wall in the Downtown Area (도심지 옹벽 상단에서의 수평변위에 관한 사례분석)

  • Bae, Yoon-Shin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.63-71
    • /
    • 2009
  • The movement of in-situ walls has become very important as construction in large cities moves upward, instead of outward. Tall structures typically have deep excavations not on1y to provide extra space for parking, but also to reduce the potential settlement of the building. These large excavations require a robust bracing system to resist the lateral earth pressures as the depth increases. Methods to predict deflections of the retaining systems are of utmost importance because wall movements allow potentia1 settlement of adjacent structures. Case studies will be analyzed and measured waI1 def1ections will be compared with predictions from empirica1ly derived charts.

  • PDF

GENERATION OF GEO-SPATIAL INFORMATION USING KOMPSAT-2 IMAGERY

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol;Lee, Kyu-Man
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • KOMPSAT-2 is the seventh high-resolution satellite in the world that provides both 1m panchromatic images and 4m multispectral images of the GSD. It is expected to be used across many different fields including digital mapping, territorial and environmental monitoring. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric data, such as satellite orbits and detailed mapping information. This study aims to generate the DEM and orthoimage by using the stereo images of KOMPSAT-2 and to explore the applicability of geo-spatial information with KOMPSAT-2. In order to ensure generation of DEMs of optimal accuracy, the RPCs data and a suitable number of GCPs were used. The accuracy of DEM generated in this research compared with DEM generated from 1:5,000 digital map. The mean differences between horizontal position of the orthoimage and the digital map data are found to be ${\pm}$3.1m, which is in the range of ${\pm}$3.5m, within the permitted limit of a 1:5,000 digital map. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • Choe, Seong-Hwan;Mun, Yong-Jae;Park, Yeong-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

Trends and Prospects of Domestic and Overseas Studies on Earth Energy Storage Minerals (지구 에너지저장광물 국내외 연구동향 및 전망)

  • Kim, Jung-min;Kim, Seong-Yong;Ahn, Eunyoung;bae, Junhee;Lee, Jae-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.437-446
    • /
    • 2020
  • The rapid demand for electric vehicles and energy storage systems has increased interest in energy storage devices worldwide. New technological alternatives are needed to reliably supply energy storage mineral resources such as lithium and vanadium, which are key materials for energy storage devices. Already, research and development activities are taking place in various countries on technologies that can directly secure lithium and vanadium. Accordingly, it is very important to analyze each country's technological trends through patent and paper analysis to establish effective research and development strategies and to set future technological development directions. This study analyzed trends in the development of new technologies and the current status of research and development at home and abroad through patent data from Korea, the United States, Europe, and Japan that were disclosed or registered from 1970 to October 2019, and the data searched for papers from January 2000 to October 2019. According to the analysis, the current growth stage of the technology related to energy storage minerals is in the beginning stage. Therefore, it is believed that a strategy to rapidly upgrade technology by combining the development of new technologies and demonstration of developed technologies is needed in order to lead the technology market and strengthen the competitiveness of technologies.

Screeening of Natural Plant Resources with Acetylcholine esterase inhibitory activity and Effect on Scopolamine-induced Memory Impairment (천연식물자원으로부터 Acetylcholine esterase 저해 활성 탐색 및 인지기능에 미치는 영향)

  • Choi, Jang Won;Won, Mu-Ho;Joo, Han-Seung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.213-226
    • /
    • 2011
  • This study was performed to investigate the effect of essential oils and ethanolic extracts of approximately 650 plant species on acetylcholine esterase (AChE) enzyme activity using Ellman's colorimetric method in 96-well microplates. The results showed that the ethanolic extracts from twig of Sophora subprostrata, twig of Phellodendron amurense, seed of Corylopsis coreana, and essential oil (EO) from Citrus paradisi, Cupressus sempervirens, Ocimum basilicum, Pinus sylvestris and Rosmarinus officinalis inhibited more than 80% of AChE activity. Among these, EO from Pinus sylvestris, C. sempervirens and C paradisi exhibited higher values of AChE inhibitory activity, which were 75, 84 and 99% at a concentration of 50 ug/ml, respectively. Finally, EO from C paradisi (grapefruit, GEO) showed the highest inhibitory activity towards AChE, which showed 91% of inhibition at a concentration of 20 ug/ml. We also examined the anti-dementia effects of GEO in mouse by passive avoidance test and Morris water maze test. The model mouse (male, ICR) of dementia (negative control) was induced by administration of scopolamine (1 mg/kg body weight). The latency time of sample group administrated with GEO (100 mg/kg, p.o.) increased significantly as compared with negative control on passive avoidance test. There were significant recovery from the scopolamine-induced deficits on learning and memory in water maze test through daily administrations with GEO (100 mg/kg, p.o.). From these results, we conclude that GEO treatment might enhance the cognitive function, suggesting that the EO of C. paradis may be a potential candidate for improvement of perceptive ability and dementia.

Finding the Minimum MBRs Embedding K Points (K개의 점 데이터를 포함하는 최소MBR 탐색)

  • Kim, Keonwoo;Kim, Younghoon
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.71-77
    • /
    • 2017
  • There has been a recent spate in the usage of mobile device equipped GPS sensors, such as smart phones. This trend enables the posting of geo-tagged messages (i.e., multimedia messages with GPS locations) on social media such as Twitter and Facebook, and the volume of such spatial data is rapidly growing. However, the relationships between the location and content of messages are not always explicitly shown in such geo-tagged messages. Thus, the need arises to reorganize search results to find the relationship between keywords and the spatial distribution of messages. We find the smallest minimum bounding rectangle (MBR) that embedding k or more points in order to find the most dense rectangle of data, and it can be usefully used in the location search system. In this paper, we suggest efficient algorithms to discover a group of 2-Dimensional spatial data with a close distance, such as MBR. The efficiency of our proposed algorithms with synthetic and real data sets is confirmed experimentally.

Temporal and Spatial Variations of Sinking-particle Fluxes in the Northwestern Subtropical Pacific (북서태평양 아열대 해역에서 침강입자 플럭스의 시·공간 변동)

  • Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min;Jeon, Dong-Chull;Jeong, Jin-Hyun;Khim, Boo-Keun;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.385-395
    • /
    • 2011
  • Time-series sediment traps were deployed at 1,000 m water depth of the northwestern subtropical Pacific from July 2009 to June 2010, with the aim of understanding temporal and spatial variations of sinking-particle fluxes. The opening and closing of the traps was synchronized at 18-day periods for 20 events. Total mass fluxes showed distinct seasonal variations with high values for the summer-fall seasons and relatively low values for winter-spring. This seasonal variation at two stations was characterized by a distinct difference in $CaCO_3$ fluxes between the two seasons. The enhanced $CaCO_3$ flux in the summer - fall seasons might be attributed to an increased planktonic foraminiferal flux. Total mass flux at FM10 station was nearly 50% higher than that at FM1 station. The difference in $CaCO_3$ fluxes between two stations contributed nearly 70% of the difference of total mass fluxes. The $CaCO_3$ flux was a major component controlling temporal and spatial variation of sinking - particle fluxes in the western subtropical Pacific Ocean.

A study on the GEO Satellite Tank Support Beam Form Definition at Preliminary Design (초기설계단계의 정지궤도위성 연료탱크 지지대 형상결정에 대한 연구)

  • Choi, Jung-Su;Kim, In-Gul;Kim, Sung-Hoon;Park, Jong-Seok;Kim, Chang-Ho;Yang, Gun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • Launch Interface Ring roles as connection department of satellite and launcher for to deliver all structure loads that occur from the satellite, and one of the most intensive load received parts. Especially COMS, the first Korean developing GEO satellite, needs Launch Interface Ring with Tank Support Beam because of dissymmetry fuel tanks. The purpose of this study is the suitable form decision of Launch Interface Ring at preliminary design of COMS. In this study, launch mass and design constraints are investigated. Moreover, optimization algorithm and simplification technique are used. At the beginning of this study, three types of launch interface ring were presented and finally model 3 was the lightest design for resistance of launch environment. Nevertheless, model 1 can be suggested for application to COMS because of the satellite gravity center control and ease of fabrication.