• Title/Summary/Keyword: Genotoxic carcinogens

Search Result 32, Processing Time 0.02 seconds

Thresholds of Genotoxic and Non-Genotoxic Carcinogens

  • Nohmi, Takehiko
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.281-290
    • /
    • 2018
  • Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.

Effect of Genotoxicity or Carcinogenecity Chemicals on the ROS Production (유전독성, 발암성 화학물질이 ROS 생성에 미치는 영향)

  • Go, Seo-Youn;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the present study, ROS detection of L5178Y cells that were treated with twenty test compounds in order to find out hydrogen peroxide ($H_2O_2$) induction for genotoxicity and carcinogenic toxicity. Twenty test compounds were consist of four classes, such as genotoxic carcinogens, genotoxic noncarcinogens, nongenotoxic carcinogens, and nongenotoxic noncarcinogens. Genotoxic carcinogens are 1,2-dibromoethane, glycidol, melphalan, diethylstilbestrol and urethane. Genotoxic noncarcinogens are 8-hydroxyquinoline, emodin, acetonitrile and diallylphthalate, L-ascorbic acid. Nongenotoxic carcinogens are methyl carbamate, O-nitrotoluene, 1,4-dioxane, tetrachloroethylene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. And nongenotoxic noncarcinogens are D-mannitol, 1,2-dichlorobenzene, caprolactam, bisphenol A and chlorpheniramine maleate.

Differential Effects of Nongenotoxic and Genotoxic Carcinogen on Cell Proliferation and c-Jun Expression in the Rat Liver Initiated with Diethylnitrosamine

  • Kim, Hye-Jin;Kim, Jong-Won;Hong, Jin-Tae;Nam, Ki-Taek;Kim, Dae-Joong
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • Cell proliferation and c-Jun expression pattern in liver exposed by nongenotoxic carcinogens phenobarbital (PB) and clofibrate, and genotoxic carcinogen 2-amino-3-methylimidazo [4,5-f] quinoline (IQ) were investigated to see whether differential effects of genotoxic and non-genotoxic carcinogens on the development of neoplastic foci may be related to differential effect on cell proliferation. Male F344 rats were initially given a single intraperitioneal injection of diethylnitrosamine (200 mg/kg body weight), and 2 weeks later, animals were fed diets containing 0.03% IQ or 0.5% CE or 0.05% PB or basal diet as a control for 6 weeks. All rats were subjected to the two-thirds partial hepatectomy (PH) at week 3. Sequential sacrifice of rats was performed until 8 weeks. Cell proliferation was examined by immunohistochemical staining of bromodeoxyuridine and c-Jun expression was determined by northern blotting. The increase of cell proliferation rate after PH was significant in the rats fed 0.05% IQ and continued until 8 weeks, while the increase was not significant in the rats fed phenobarbital and clofibrate compared to that in the rats fed control diet. mRNA level of c-Jun in the liver treated with IQ was about 7 fold higher than that of control and peak at 5 hours after rH. In the liver treated with CE, mRNA level of c-Jun was 3-4 fold higher than that of control and the highest level of mRNA of c-Jun was seen at 24 hours after PH. These results show that differential effects of genotoxic and non-genotoxic carcinogens on the development of neoplastic foci may be related to differential effect on cell proliferation pattern.

  • PDF

Quantitative Approaches to Assess Key Carcinogenic Events of Genotoxic Carcinogens

  • Fukushima, Shoji;Gi, Min;Fujioka, Masaki;Kakehashi, Anna;Wanibuchi, Hideki;Matsumoto, Michiharu
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.291-296
    • /
    • 2018
  • Chemical carcinogenesis is a multistep process. Genotoxic carcinogens, which are DNA-reactive, induce DNA adduct formation and genetic alterations in target cells, thereby generating mutated cells (initiation). Subsequently, preneoplastic lesions appear through clonal proliferation of the mutated cells and transform into tumors (promotion and progression). Many factors may influence these processes in a dose-dependent manner. Therefore, quantitative analysis plays an important role in studies on the carcinogenic threshold of genotoxic carcinogens. Herein, we present data on the relationship between key carcinogenic events and their deriving point of departure (PoD). Their PoDs were also compared to those of the carcinogenesis pathway. In an experiment, the liver of rats exposed to 2-amino-3,8-dimethylimidazo-(4,5-f)quinoxaline (MeIQx) was examined to determine the formation of MeIQx-DNA adducts, generation of mutations at LacI transgene, and induction of preneoplastic glutathione S-transferase placental form (GST-P)-positive foci and tumors (benign and malignant). The PoDs of the above key events in the carcinogenicity of MeIQx were increased as the carcinogenesis advanced; however, these PoDs were lower than those of tumor induction. Thus, the order of key events during tumor induction in the liver was as follows: formation of DNA adducts ${\ll}$ Mutations ${\ll}$ GST-positive foci (preneoplasia) ${\ll}$ Tumor (adenoma and carcinoma). We also obtained similar data on the genotoxic and carcinogenic PoDs of other hepatocarcinogens, such as 2-amino-3,8-dimethylimidazo(4,5-f)quinoline. These results contribute to elucidating the existence of a genotoxic and carcinogenic threshold.

CB6F1-Tg rasH2 Mouse Carrying Human Prototype c-Ha-ras Gene As an Alternative Model For Carcinogenicity Testing For Pharmaceuticals

  • Usui, T.;Urano, K.;Suzuki, S.;Hioki, K.;Maruyama, Ch.;Tomisawa, M.;Ohnishi, Y.;Suemizu, H.;Yamamoto, S.
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.293-297
    • /
    • 2001
  • The international pharmaceutical and regulatory communities had been recognizing the limited utility of conventional rodent carcinogenicity study particularly on the second species, mouse, after intense investigation of carcinogenicity data base worldwide, and a new scheme for carcinogenicity testing for pharmaceuticals was proposed at the Expert Working Group on Safety in the International Conference on Harmonization (ICH) in 1996. CB6F 1-Tg rasH2 mouse carrying human prototype c-Ha-ras gene with its own promoter/enhancer is one oj the new carcinogenicity assay model for human cancer risk assessment. Studies have been conducted since 1992 to validate the transgenic (Tg) mice for rapid carcinogenicity test-ing, short term (26 weeks) studies with genotoxic (by Salmonella), non-genotoxic carcinogens, genotoxic non-carcinogens, non-genotoxic non-carcinogens revealed relatively high concordance oj the response of the Tg mouse with classical bioassay across classes of carcinogenic agents. Mechanistic basis for carcinogensis in the model are being elucidated in terms of the role of overexpression and/or point mutation of the transgene. This report review the initial studies of validation of the model and preliminary results of on-going ILSI HESI ACT project will be presented.

  • PDF

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Perez, Luis Orlando;Gonzalez-Jose, Rolando;Garcia, Pilar Peral
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.289-300
    • /
    • 2016
  • Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Evaluation of the Genotoxicity of Cadmium Chloride in Mice Using the Micronucleus Test

  • Kalantari, Heybatullah;Akhbari, Arash;Elliott, Simon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.255-258
    • /
    • 2002
  • In order to determine the safety of chemicals and pharmaceutical products, various methods can be used to evaluate the toxicity. In this study the genotoxic effect of the widely used industrial chemical, cadmium chloride, was assessed using the micronucleus test in peripheral blood of mice. The presence of micronucleated reticulocytes by microscopic observation following acridine orange staining indicated a potential genotoxic effect. The genotoxicity of intraperitoneally (i.p.) administered cadmium chloride (0.5, 1, 2 mg/kg) appeared to be dose dependent, with the maximum tolerated dose (MTD) found to be 2 mg/kg. Compared to the negative control (saline), cadmium chloride (2 mg/kg) exhibited statistically significant genotoxic potential (P<0.05) but was found to be less than the positive control of mitomycin C (0.5 mg/kg) and was not statistically significant compared to historical negative controls (P>0.05).

  • PDF

Comparison of In Vitro Cell Transformation Assay Using Murine Fibroblasts and Human Keratinocytes

  • Ahn, Jun-Ho;Park, Sue-Nie;Yum, Yung-Na;Kim, Ji-Young;Lee, Michael
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The in vitro cell transformation assays (CTA) were performed using BALB/3T3 murine fibroblasts and HaCaT human keratinocytes in order to evaluate concordance between both in vitro CTAs and carcinogenicity with compounds differing in their genotoxic and carcinogenic potential. Six test articles were evaluated, two each from three classes of compounds: genotoxic carcinogens (2-amino-5-nitrophenol and 4-nitroquinoline-N-oxide), genotoxic noncarcinogens (8-hydroxyquinoline and benzyl alcohol), and nongenotoxic carcinogens (methyl carbamate and N-nitrosodiphenylamine). Any foci of size $\geq$2 mm regardless of invasiveness and piling was scored as positive in CTA with BALB/3T3. As expected, four carcinogens regardless of their genotoxicity had positive outcomes in two-stage CTA using BALB/3T3 cells. However, of the two genotoxic noncarcinogens, benzyl alcohol was positive CTA finding. We concluded that, of the 6 chemicals tested, the sensitivity for BALB/3T3 system was reasonably high, being 100%. The respective specificity for BALB/3T3 assay was 50%. We also investigated the correlation between results of BALB/3T3 assay and results from HaCaT assay in order to develop a reliable human cell transformation assay. However, evaluation of staining at later time points beyond the confluency stage did not yield further assessable data because most of HaCaT cells were detached after $2{\sim}3$ days of confluency. Thus, after test article treatment, HaCaT cells were split before massive cell death began. In this modified protocol for this HaCaT system, growing attached colonies were counted instead of transformed foci 3 weeks since last subculture. Compared to BALB/3T3 assay, HaCaT assay showed moderate low sensitivity and high specificity. Despite these differences in specificity and sensitivity, both cell systems did exhibit same good concordance between in vitro CTA and rodent carcinogenicity findings (overall 83% concordant results). At present the major weakness of these in vitro CTA is lack of validation for regulatory acceptance and use. Thus, more controlled studies will be needed in order to be better able to assess and quantitatively estimate in vitro CTA data.

Differential Effects of Nongenotoxic and Genotoxic Carcinogens on the Preneoplastic Lesions in the gat Liver

  • Kim, Dae-Joong;Lee, Kook-Kyung;Hong, Jin-Tae
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.363-369
    • /
    • 1998
  • Glutathione S-transferase placental form (GST-P) positive foci development and its expression in liver exposed by nongenotoxic carcinogens phenobarbital (PB) and clofibrate (CF), and genotoxic carcinogen 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) were investigated as a measure of carcinogenic potential of these chemicals. Male F344 rats were initially given a single intraperitioneal injection of diethyinitrosamine (200 mg/kg), and 2 weeks later, animals were fed diets containing 0.03% IQ or 0.5% CF or 0.05% PB or basal diet as a control for 6 weeks. All rats were subjected to two-thirds partial hepatectomy (PH) at week 3. Sequential sacrifice of rats was performed at 8 weeks or 52 weeks, and liver tissues were examined for immunohistochemical staining of GST-P positive foci. The numbers (No./$cm^2$) and areas ($mm^2$/ $cm^2$) of GST-P positive foci were increased by IQ or PB, but were decreased by CF compare to the control. Consistent with the development of GST-P positive foci, a time-related increase in the expression of GST-P mRNA was found in the rats treated with IQ, whereas CF decreased it. The incidence of hepatocellular carcinoma at 52 weeks was increased by all three chemicals. These results show that PB and IQ induced GST-P positive foci, but the peroxisome proliferator CF did not, which suggest that the prediction of carcinogenic potency based on the development of prenoplastic foci may cause false negative in a particular category compounds like peroxisome proliferators.

  • PDF

Screening of QSAR Descriptors for Genotoxicily Prediction of Drinking Water Disinfection Byproducts (DBPs), Chlorinated Aliphatic Compounds-The Role of Thermodynamic factors (음용수의 염소살균부산물(DBPs)인 염화지방족화합물의 QSAR 독성예측치에 대한 열역학적 분자표현자의 역할(II))

  • 김재현;조진남
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.118-121
    • /
    • 2001
  • The predictive screening of various molecular descriptors for predicting carcinogenic, mutagenic, teratogenic and alkylation activity of chlorinated disinfection byproducts (DBPs) has been investigated for the application of quantitative structure-activity relationships (QSAR). The toxicity index for 29 compounds were computed by the PASS program and active values were employed in this study. Studies show that different descriptors account for the model equation of each genotoxic endpoint and that thermodynamic descriptors significantly played a major role on prediction of endpoints of chlorinated aliphatic compounds.

  • PDF