• Title/Summary/Keyword: Genotoxic

Search Result 273, Processing Time 0.017 seconds

Growth inhibition of hydrotrope-combined copper against Microcystis aeruginosa and evaluation of its toxicity (Microcystis aeruginosa에 대한 hydrotrope-combined copper의 생장억제 및 독성 평가)

  • Park, Se-Keun;Ji, Jun-Gu;Jang, Hee Jung;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Hydrotrope-combined copper (HCC) is a copper ($Cu^{2+}$)-based algicide, which is combined with a hydrotrope that keeps copper ion in solution to improve performance. This study assessed the growth inhibition effect of HCC against Microcystis aeruginosa which is one of the most common toxic cyanobacterium in eutrophic freshwater environment. Various HCC doses, ranging from 5.5 to $550{\mu}g/L$ as $Cu^{2+}$, were applied to either BG-11 or 1/4 diluted medium with low- or high-inoculum density of M. aeruginosa. Growth inhibition was monitored based on a decrease in chlorophyll-a content in culture medium during the incubation. Results showed that HCC significantly inhibited the growth of M. aeruginosa in a dose-dependent manner. In case of 1/4 diluted BG-11 medium, HCC dose as low as $5.5{\mu}g$ $Cu^{2+}/L$ completely inhibited the production of chlorophyll-a by M. aeruginosa. It was found that HCC did not induce any significant release of microcystin-LR from M. aeruginosa. Acute toxicity of HCC was tested using Daphnia magna, and the 24-h $EC_{50}$ value was 0.30 mg/L as $Cu^{2+}$ which was much higher than the actual inhibition dose. Ames test was performed using Salmonella enterica serovar Typhimurium TA100, and HCC showed no increase in the number of revertant colonies. The result suggested that HCC does not have any mutagenic potential in the aquatic environment. In addition, no genotoxic effect of HCC was also confirmed based on the SOS ChromoTest using Escherichia coli PQ37. Therefore, HCC could be used as a relatively safe and effective pre- and post-treatment agent to control hazardous algal blooming in aquatic environments.

Study of Antidotes on the Nephrotoxicity of Ochratoxin A (Ochratoxin A의 신장독성감소 방법에 대한 연구)

  • 서경원;김준규;김태완;정세영;김효정
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 1998
  • Ochratoxin A (OA) is a mycotoxin produced by Aspergillus ochraceus as well as other molds. It is a natural contaminant of mouldy food and feed. OA has a number of toxic effects, the most prominant being nephrotoxicity. Futhermore, OA is immunosuppressive, genotoxic, teratogenic and carcinogenic. OA inhibits protein synthesis by competition with phenylalanine in the phenylalanine-tRNA aminoacylation reaction. Recently, lipid peroxidation induced by OA has been reported, indicating that the lesion induced by this mycotoxin could be also related to oxidative pathway. Since it seems impossible to avoid contamination of foodstuffs by toxigenic fungi, detoxification and detoxication of OA are needed. In this study we investigated the protective effects of aspartame (Asp), phenylalanine (Phe), polyphenol 70S (PP) and aloe extract (AE) on the nephrotoxicity induced by subacute exposure to the OA. Asp and Phe are structural analogues of OA. PP, an ingredient of Green Tea and AE have been known as antioxidant and radical scavenger. Phe (40 mg/kg, i.p.) and Asp (25 mg/kg, p.o.) were administered to Sprague-Dawley rats simultaneously with OA (2.0 mg/kg, p.o.) for 2 weeks. PP (200 mg/kg, p.o.) and AE (50 mg/kg, i.v.) were pretreated before administration of OA, for 2 weeks and 3 days, respectively. Using enzymuria, BUN level, creatinemia and histophathologic examination as indices of renal damage, we observed that all of four compounds prevented the nephrotoxic effects induced by OA. It seems that structural analogues of OA such as Asp and Phe have better protective effect on the nephrotoxicity of OA than antioxidants. These results indicate that 1) formation of free radical and lipid peroxidation are likely to be involved in the nephrotoxicity of OA in vivo, 2) Asp, PP and AE might be used for prevention of renal lesions in cases of ochratoxicosis.

  • PDF

The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury (기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할)

  • Kim, Je-Hyeong;Yoon, Dae Wui;Hur, Gyu Young;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.451-463
    • /
    • 2006
  • Background : Reactive oxygen species (ROS) take center stage as executers in ventilator-induced lung injury (VILI). The protein with DNA-damage scanning activity, poly (ADP-ribose) polymerase-1 (PARP1), signals DNA rupture and participates in base-excision repair. Paradoxically,overactivation of PARP1 in response to massive genotoxic injury such as ROS can induce cell death through ${\beta}$ -nicotinamide adenine dinucleotide ($NAD^+$) depletion, resulting in inflammation. The purpose of this study is to investigate the role of PARP1 and the effect of its inhibitor in VILI. Methods : Forty-eight male C57BL/6 mice were divided into sham, lung protective ventilation(LPV), VILI, and PARP1 inhibitor (PJ34)+VILI (PJ34+VILI) groups. Mechanical ventilator setting for the LPV group was $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min + 2 hours. The VILI and PJ34+VILI groups were ventilated on a setting of $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min + 2 hours. As a PARP1 inhibitor for the PJ34+VILI group, 20 mg/Kg of PJ34 was treated intraperitoneally 2 hours before mechanical ventilation. Wet-to-dry weight ratio and acute lung injury (ALI) score were measured to determine the degree of VILI. PARP1 activity was evaluated by using an immunohistochemical method utilizing biotinylated NAD. Myeloperoxidase (MPO) activity and the concentration of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 were measured in bronchoalveolar lavage fluid (BALF). Results : In the PJ34+VILI group, PJ34 pretreatment significantly reduced the degree of lung injury, compared with the VILI group (p<0.05). The number of cells expressing PARP1 activity was significantly increased in the VILI group, but significantly decreased in the PJ34+VILI group (p=0.001). In BALF, MPO activity, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 were also significantly lower in the PJ34+VILI group (all, p<0.05). Conclusion : PARP1 overactivation plays a major role in the mechanism of VILI. PARP1 inhibitor prevents VILI, and decreases MPO activity and inflammatory cytokines.