DOI QR코드

DOI QR Code

Microcystis aeruginosa에 대한 hydrotrope-combined copper의 생장억제 및 독성 평가

Growth inhibition of hydrotrope-combined copper against Microcystis aeruginosa and evaluation of its toxicity

  • 박세근 (한림대학교 환경생명공학과) ;
  • 지준구 (한림대학교 환경생명공학과) ;
  • 장희정 ((주)소프트아쿠아) ;
  • 김영관 (강원대학교 환경공학과) ;
  • 오영숙 (명지대학교 환경에너지공학과) ;
  • 최성찬 (한림대학교 환경생명공학과)
  • Park, Se-Keun (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Ji, Jun-Gu (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Jang, Hee Jung (Softaqua Inc.) ;
  • Kim, Yeong-Kwan (Department of Environmental Engineering, Kangwon National University) ;
  • Oh, Young-Sook (Department of Environmental Engineering & Energy, Myongji University) ;
  • Choi, Sung-Chan (Department of Environmental Science & Biotechnology, Hallym University)
  • 투고 : 2014.11.20
  • 심사 : 2015.02.16
  • 발행 : 2015.03.31

초록

Hydrotrope-combined copper (HCC)는 구리의 용존성을 유지하기 위해 황산구리와 친수성 작용기를 결합시켜 제조한 구리 이온($Cu^{2+}$) 기반의 조류생장 억제제이다. 본 연구는 부영양성 담수에 분포하는 대표적인 남조세균 Microcystis aeruginosa에 대한 HCC의 생장 저해효과를 평가하였다. 이를 위하여 M. aeruginosa의 접종 농도 또는 생장배지인 BG-11의 희석 정도를 달리하면서 구리 이온 농도 기준 $5.5-550{\mu}g/L$의 범위에서 HCC를 첨가하고 생장저해효과를 chlorophyll-a 농도의 변화로 측정하였다. HCC는 M. aeruginosa의 생장을 현저히 저해하였으며 특히 1/4로 희석한 BG-11 액체배지에서는 구리 이온의 농도로 환산했을 때 $5.5{\mu}g/L$가 되는 HCC 첨가만으로도 생장을 완전히 억제하는 것으로 나타났다. HCC의 첨가로 인해 세포로부터 microcystin-LR 독소가 용출되는지 확인한 실험에서 HCC는 M. aeruginosa의 생장을 억제하는 유효 농도뿐만 아니라 그 이상의 농도($550{\mu}g/L$)에서도 독소를 용출시키지 않는 것으로 확인되었다. 한편 물벼룩(Daphnia magna)에 대한 HCC의 급성독성시험에서 50% 유영저해를 일으킨 시료에 함유된 구리의 농도는 약 0.30 mg/L로서 생장억제 유효농도를 훨씬 상회하였다. 추가로 HCC의 돌연변이원성과 유전독성을 평가하기 위해서 수행한 Ames test 및 SOS ChromoTest에서도 HCC는 M. aeruginosa의 생장억제 유효농도를 상회하는 농도 수준에서도 독성물질로 작용하지 않는 것으로 나타났다. 이상의 결과로부터 기존 구리 기반 조류생장 억제제의 한계를 개선한 HCC가 상습적으로 조류 대번식이 발생하는 수계에서 사전 또는 사후처리제로서 비교적 안전하고 유용하게 쓰일 수 있을 것으로 기대된다.

Hydrotrope-combined copper (HCC) is a copper ($Cu^{2+}$)-based algicide, which is combined with a hydrotrope that keeps copper ion in solution to improve performance. This study assessed the growth inhibition effect of HCC against Microcystis aeruginosa which is one of the most common toxic cyanobacterium in eutrophic freshwater environment. Various HCC doses, ranging from 5.5 to $550{\mu}g/L$ as $Cu^{2+}$, were applied to either BG-11 or 1/4 diluted medium with low- or high-inoculum density of M. aeruginosa. Growth inhibition was monitored based on a decrease in chlorophyll-a content in culture medium during the incubation. Results showed that HCC significantly inhibited the growth of M. aeruginosa in a dose-dependent manner. In case of 1/4 diluted BG-11 medium, HCC dose as low as $5.5{\mu}g$ $Cu^{2+}/L$ completely inhibited the production of chlorophyll-a by M. aeruginosa. It was found that HCC did not induce any significant release of microcystin-LR from M. aeruginosa. Acute toxicity of HCC was tested using Daphnia magna, and the 24-h $EC_{50}$ value was 0.30 mg/L as $Cu^{2+}$ which was much higher than the actual inhibition dose. Ames test was performed using Salmonella enterica serovar Typhimurium TA100, and HCC showed no increase in the number of revertant colonies. The result suggested that HCC does not have any mutagenic potential in the aquatic environment. In addition, no genotoxic effect of HCC was also confirmed based on the SOS ChromoTest using Escherichia coli PQ37. Therefore, HCC could be used as a relatively safe and effective pre- and post-treatment agent to control hazardous algal blooming in aquatic environments.

키워드

참고문헌

  1. Baron, M., Arellano, J.B., and Gorge, J.L. 1995. Copper and photosystem II: a controversial relationship. Physiol. Plant 94, 174-180. https://doi.org/10.1111/j.1399-3054.1995.tb00799.x
  2. Choi, S.K., Lee, J.Y., Kwon, D.Y., and Cho, K.J. 2006. Settling characteristics of problem algae in the water treatment process. Water Sci. Technol. 53, 113-119. https://doi.org/10.2166/wst.2006.214
  3. Codd, G.A. and Poon, G.K. 1988. Cyanobacterial toxins, pp. 283-296. In Rogers, L.J. and Gallon, J.R. (eds), Biochemistry of the Algae and Cyanobacteria. Clarendon Press, Oxford.
  4. Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., and Franson, M.A.H. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., USA.
  5. Fischer, W.J., Garthwaite, I., Miles, C.O., Ross, K.M., Aggen, J.B., Chamberlin, A.R., Towers, N.R., and Dietrich, D.R. 2001. Congener-ndependent immunoassay for microcystins and nodularins. Environ. Sci. Technol. 35, 4849-4856. https://doi.org/10.1021/es011182f
  6. Flemming, C.A. and Trevors, J.T. 1989. Copper toxicity and chemistry in the environment: a review. Water Air Soil Poll. 44, 143-158. https://doi.org/10.1007/BF00228784
  7. Garcia-Villada, L., Rico, M., Altamirano, M., Sanchez-Martin, L., Lopez-Rodas, V., and Costas, E. 2004. Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res. 38, 2207-2213. https://doi.org/10.1016/j.watres.2004.01.036
  8. Hudnell, H.K. 2010. The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. Toxicon 55, 1024-1034. https://doi.org/10.1016/j.toxicon.2009.07.021
  9. International Organization for Standardization. 1996. Water qualitydetermination of the inhibition of mobility of Daphnia magna Straus (Cladocera, Crustacea)-acute toxicity test. International Organization for Standardization, Geneva, Switzerland.
  10. Joh, G., Choi, Y.S., Shin, J.K., and Lee, J. 2011. Problematic algae in the sedimentation and filtration process of water treatment plants. J. Water Suppl. Res. Technol. AQUA 60, 219-230. https://doi.org/10.2166/aqua.2011.035
  11. Johnson, H.L., Stauber, J.L., Adams, M.S., and Jolley, D.F. 2007. Copper and zinc tolerance of two tropical microalgae after copper acclimation. Environ. Toxicol. 22, 234-244. https://doi.org/10.1002/tox.20265
  12. Jones, G.J. and Orr, P.T. 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res. 28, 871-876. https://doi.org/10.1016/0043-1354(94)90093-0
  13. Jun, H.B., Lee, Y.J., Lee, B.D., and Knappe, D.R.U. 2001. Effectiveness of coagulants and coagulant aids for the removal of filter-clogging Synedra. J. Water Suppl. Res. Technol. AQUA 50, 135-148.
  14. Kenefick, S.L., Hrudey, S.E., Peterson, H.G., and Prepas, E.E. 1993. Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci. Technol. 27, 433-440.
  15. Kovacs, A., Abdel-Hameid, N.A., Acs, A., Ferincz, A., and Kovats, N. 2012. A novel protocol for assessing aquatic pollution, based on the feeding inhibition of Daphnia magna. Knowl. Managt. Aquatic Ecosyst. 404, 07.
  16. Lantzsch, H. and Gebel, T. 1997. Genotoxicity of selected metal compounds in the SOS chromotest. Mutat. Res. 389, 191-197. https://doi.org/10.1016/S1383-5718(96)00146-5
  17. Lee, C.S., Ahn, C.Y., La, H.J., Lee, S., and Oh, H.M. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean J. Environ. Biol. 31, 233-242. https://doi.org/10.11626/KJEB.2013.31.4.233
  18. Lewitus, A.J., Horner, R.A., Caron, D.A., Garcia-Mendoza, E., Hickey, B.M., Hunter, M., Huppert, D.D., Kudela, R.M., Langlois, G.W., Largier, J.L., et al. 2012. Harmful algal blooms along the North American west coast region: history, trends, causes, and impacts. Harmful Algae 19, 133-159. https://doi.org/10.1016/j.hal.2012.06.009
  19. Ma, J., Lei, G., and Fang, J. 2007. Effect of algae species population structure on their removal by coagulation and filtration processesa case study. J. Water Suppl. Res. Technol. AQUA 56, 41-54. https://doi.org/10.2166/aqua.2007.062
  20. Maron, D.M. and Ames, B.N. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113, 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  21. Merck, Inc. 2001. Copper (II) sulfate pentahydrate very fine crystals. Safety data sheet. pp. 1-6.
  22. Neilan, B.A., Dittmann, E., Rouhiainen, L., Bass, R.A., Schaub, V., Sivonen, K., and Borner, T. 1999. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181, 4089-4097.
  23. Organization for Economic Co-operation and Development. 2004. Test no. 202. Daphnia sp. acute immobilization test. In OECD (ed.), Guidelines for Testing Chemicals, Section 2: Effects on Biotic Systems. OECD Publishing, Paris, France.
  24. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., et al. 2003. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol. 18, 395-402. https://doi.org/10.1002/tox.10141
  25. Quillardet, P. and Hofnung, M. 1985. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat. Res. 147, 65-78. https://doi.org/10.1016/0165-1161(85)90020-2
  26. Raman, R.K. and Cook, B.C. 1988. Guidelines for applying copper sulfate as an algicide: Lake Loami field study. ILENR/REWR-88/19. Illinois Dept. of Energy and Natural Resources, Springfield, IL.
  27. Stumpf, R.P., Tomlinson, M.C., Calkins, J.A., Kirkpatrick, B., Fisher, K., Nierenberg, K., Currier, R., and Wynne, T.T. 2009. Skill assessment for an operational algal bloom forecast system. J. Mar. Syst. 76, 151-161. https://doi.org/10.1016/j.jmarsys.2008.05.016
  28. Wurts, W.A. and Perschbacher, P.W. 1994. Effects of bicarbonate alkalinity and calcium on the acute toxicity of copper to juvenile channel catfish (Ictalurus punctatus). Aquaculture 125, 73-79. https://doi.org/10.1016/0044-8486(94)90284-4
  29. Zhou, S., Shao, Y., Gao, N., Deng, Y., Qiao, J., Ou, H., and Deng, J. 2013. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. Sci. Total Environ. 463-464, 111-119. https://doi.org/10.1016/j.scitotenv.2013.05.064

피인용 문헌

  1. Effectiveness of a copper based molluscicide for controlling Dreissena adults vol.5, pp.4, 2015, https://doi.org/10.1039/c8ew00890f