• Title/Summary/Keyword: Genomic species

Search Result 592, Processing Time 0.025 seconds

A Study of Genomic Clonal Types of Porphyromonas endodontalis and Prevotella intermedia Isolated from Infected Root Canals with Restriction Endonuclease Analysis (감염근관에서 분리한 Porphyromonas endodontalis와 Prevotella intermedia의 제한효소분석법에 의한 유전자 이질성에 관한 연구)

  • Shin, Joo-Hee;Kim, Han-Wook;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.413-427
    • /
    • 1997
  • Porphyromonas endodontalis and Prevotella intermedia are black-pigmented anaerobic gram negative rods which have been isolated from infected root canals and submucous abscesses of endodontic origin. And they are associated with clinical symptoms such as pain, percussion, and foul odor. It has been reported that there are 3 serotypes according to capsule membrane in P. endodontalis and 2 DNA homology groups and 3 serotypes in P. intermedia, but there is no data available regarding genetic diversity for the species P. endodontalis and P. intermedia. The purpose of this study is to investigate genetic diversities between individual strains of P. endodontalis and P. intermedia which are indistinguishable by serotyping and biotyping using bacterial DNA restriction endonuclease analysis. 45 teeth with at least one clinical symptoms, with single canal, and with pulp necrosis were sampled. For sampling bacteria, access cavity was prepared after disinfecting tooth and its surroundings. Then the paper point was inserted to the apex of the canal, leave there for 15 seconds, and finally it was placed into PRAS Ringer's solution and PBS solution. P. endodontalis and P. intermedia were identified by biochemical test and IIF after subculturing black and brown colonies which were produced after 7 days of incubation on BAP in anaerobic chamber. P. endodontalis and P. intermedia strains were grown in BHI broth and whole genomic DNA was extracted by phenol-chloroform extraction technique and digested by restriction endonuclease, Eco RI and Pst I. The resulting DNA fragments were separated by agarose gel electrophoresis, stained with EtBr and photographed under UV light. The results were as follows : 1. In both P. endodontalis and P. intermedia, different serotypes could be found within a root canal of same patient. 2. There were obvious genetic heterogeneity within a patient and within a serotype in both P. endodontalis and P. intermedia. 3. P. endodontalis serotype c, isolated from different patients, exhibited limited genotypic diversity.

  • PDF

A Genetic Marker Associated with the A1 Mating Type Locus in Phytophthora infestans

  • KIM KWON-JONG;EOM SEUNG-HEE;LEE SANG-PYO;JUNG HEE-SUN;KAMOUN SOPHIEN;LEE YOUN SU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.502-509
    • /
    • 2005
  • Sexual reproduction plays an important role in the biology and epidemiology of oomycete plant pathogens such as the heterothallic species Phytophthora infestans. Recent worldwide dispersal of A2 mating type strains of P. infestans resulted in increased virulence, gene transfer, and genetic variation, creating new challenges for disease management. To develop a genetic assay for mating type identification in P. infestans, we used the Amplified Fragment Length Polymorphism (AFLP) technique. The primer combination E+AT/M+CTA detected a fragment specific to A1 mating type (Mat-A1) of P. infestans. This fragment was cloned and sequenced, and a pair of primers (INF-1, INF-2) were designed and used to differentiate P. infestans Mat-A1 from Mat-A2 strains. The Mat A1-specific fragment was detected using Southern blot analysis of PCR products amplified with primers INF-1 and INF-2 from genomic DNA of 14 P. infestans Mat-A1 strains, but not 13 P. infestans Mat-A2 strains or 8 other isolates representing several Phytophthora spp. Southern blot analysis of genomic DNAs of P. infestans isolates revealed a 1.6 kb restriction enzyme (EcoRI, BamHI, AvaI)-fragment only in Mat-A1 strains. The A1 mating type-specific primers amplified a unique band under stringent annealing temperatures of $63^{\circ}C-64^{\circ}C$, suggesting that this PCR assay could be developed into a useful method for mating type determination of P. infestans in field material.

Comparative Genomics Study of Interferon-$\alpha$ Receptor-1 in Humans and Chimpanzees

  • Kim, Il-Chul;Chi, Seung-Wook;Kim, Dae-Won;Choi, Sang-Haeng;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.142-148
    • /
    • 2005
  • The immune response-related genes have been suggested to be the most favorable genes for positive selection during evolution. Comparing the entire DNA sequence of chimpanzee chromosome 22 (PTR22) with human chromosome 21 (HSA21), we have identified 15 orthologs having indel in their coding sequences. Among them, interferon-${\alpha}$ receptor-1 gene (IFNAR1), an immuneresponse-related gene, is subjected to comparative genomic analysis. Chimpanzee IFNAR1 showed the same genomic structure as human IFNAR1 (11 exons and 10 introns) except the 3 bp insertion in exon 4. The sequence alignment of IFNAR1 coding sequence indicated that 'ISPP' amino acid sequence motif is highly conserved in chimpanzee and other animals including mouse and chicken. However, the human IFNAR1 shows that one proline residue is missing in the sequence motif. The homology modeling of the IFNAR1 structures suggests that the proline deletion in human IFNAR1 leads to the formation of the following ${\alpha}$-helix, whereas two sequential prolines in chimpanzee IFNAR1 inhibit it. As a result, human IFNAR1 may adopt a characteristic structure distinct from chimpanzee IFNAR1. This human specific trait could contribute to specific immune response in the most optimized manner for humans. Further molecular biological studies on the IFNAR1 will help us to gain insights into the molecular implication of species-specific host-pathogen interaction in primate evolution.

Identification of Fusobacterium nucleatum isolated from Korean by F. nucleatum subspecies-specific DNA probes (Dot blot hybridization법을 이용한 Fusobacterium nucleatum 아종-특이 DNA 프로브의 특이성 평가)

  • Kim, Hwa-Sook;Kook, Joong-Ki
    • Journal of Korean society of Dental Hygiene
    • /
    • v.6 no.4
    • /
    • pp.311-324
    • /
    • 2006
  • The purpose of this investigation was to evaluate of the specificity of Fusobacterium nucleatum subspecies-specific DNA probes using dot blot hybridization. To confirm whether the clinical isolates were F. nucleatum or not, 16S rDNA of them were cloned and sequenced. The sequencing data were used in homology search with database of GenBank. When the homology was above 98% compared with the nucleotide sequence of a certain bacteria, it was judged as the same species with the bacteria. 23 strains of F. nucleatum were isolates from subgingival plaque of periodontitis patient. The clinical isolates of F. nucleatum were classified into 10 groups using phylogenetic analysis of 16S rDNA sequence. F. nucleatum subspecies nucleatum-specific DNA probe Fu4(1.3 kb) reacted with genomic DNAs from 8 type strains of F. nucleatum and it reacted strongly with those from 8 clinical isolates. The Fp4(0.8 kb) reacted with F. nucleatum subsp. polymorphum ATCC 10953 and one clinical isolates. Fv35(1.9 kb) and Fs17(8.2 kb) probes reacted with genomic DNAs from F. nucleatum subsp. vincentii ATCC 49256 and F. nucleatum subsp. fusiform ATCC 51190, respectively. Our results showed that it is not enough to evaluate the specificity of F. nucleatum subspecies-specific DNA probes with only dot blot hybridization. Therefore, Southern blot analysis will be necessary to confirm the specificity of F. nucleatum subspecies-specific DNA probes.

  • PDF

Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing

  • Kim, Hyeongmin;Lee, Seung Jae;Jo, Ick-Hyun;Lee, Jinsu;Bae, Wonsil;Kim, Hyemin;Won, Kyungho;Hyun, Tae Kyung;Ryu, Hojin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.

Genome sequence of Caballeronia sordidicola strain PAMC 26510 isolated from Psoroma sp., an Antarctic lichen (남극 지의류에서 분리한 Caballeronia sordidicola균주 PAMC 26510의 유전체 서열 분석)

  • Yang, Jhung Ahn;Hong, Soon Gyu;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.137-140
    • /
    • 2017
  • Caballeronia sordidicola strain PAMC 26510 was isolated from Psoroma sp., a lichen material, collected from Barton Peninsula of King George Island in Antarctica. The draft genome sequence of PAMC 26510 consisted of 224 contigs and they was 7,872,143 base pairs with 59.7% G+C content. The genome included 7,580 protein coding sequences and 6 ribosomal RNA genes and 46 tRNA genes. The strain PAMC 26510 is also a metabolic generalist as we have observed in previous genomic studies in the arctic strain of Caballeronia sordidicola. The draft genomic sequences of PAMC 26510 had six CRISPR arrays on six contigs, and there were two clusters of CRISPR-associated genes that were linked with respective CRISPR arrays.

Analysis of allele-specific expression using RNA-seq of the Korean native pig and Landrace reciprocal cross

  • Ahn, Byeongyong;Choi, Min-Kyeung;Yum, Joori;Cho, In-Cheol;Kim, Jin-Hoi;Park, Chankyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1816-1825
    • /
    • 2019
  • Objective: We tried to analyze allele-specific expression in the pig neocortex using bioinformatic analysis of high-throughput sequencing results from the parental genomes and offspring transcriptomes from reciprocal crosses between Korean Native and Landrace pigs. Methods: We carried out sequencing of parental genomes and offspring transcriptomes using next generation sequencing. We subsequently carried out genome scale identification of single nucleotide polymorphisms (SNPs) in two different ways using either individual genome mapping or joint genome mapping of the same breed parents that were used for the reciprocal crosses. Using parent-specific SNPs, allele-specifically expressed genes were analyzed. Results: Because of the low genome coverage (${\sim}4{\times}$) of the sequencing results, most SNPs were non-informative for parental lineage determination of the expressed alleles in the offspring and were thus excluded from our analysis. Consequently, 436 SNPs covering 336 genes were applicable to measure the imbalanced expression of paternal alleles in the offspring. By calculating the read ratios of parental alleles in the offspring, we identified seven genes showing allele-biased expression (p<0.05) including three previously reported and four newly identified genes in this study. Conclusion: The newly identified allele-specifically expressing genes in the neocortex of pigs should contribute to improving our knowledge on genomic imprinting in pigs. To our knowledge, this is the first study of allelic imbalance using high throughput analysis of both parental genomes and offspring transcriptomes of the reciprocal cross in outbred animals. Our study also showed the effect of the number of informative animals on the genome level investigation of allele-specific expression using RNA-seq analysis in livestock species.

Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics

  • Son, Seungwoo;Lee, Raham;Park, Seung-Moon;Lee, Sung Ho;Lee, Hak-Kyo;Kim, Yangseon;Shin, Donghyun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1411-1422
    • /
    • 2021
  • Lactobacillus acidophilus is a gram-positive, microaerophilic, and acidophilic bacterial species. L. acidophilus strains in the gastrointestinal tracts of humans and other animals have been profiled, but strains found in the canine gut have not been studied yet. Our study helps in understanding the genetic features of the L. acidophilus C5 strain found in the canine gut, determining its adaptive features evolved to survive in the canine gut environment, and in elucidating its probiotic functions. To examine the canine L. acidophilus C5 genome, we isolated the C5 strain from a Korean dog and sequenced it using PacBio SMRT sequencing technology. A comparative genomic approach was used to assess genetic relationships between C5 and six other strains and study the distinguishing features related to different hosts. We found that most genes in the C5 strain were related to carbohydrate transport and metabolism. The pan-genome of seven L. acidophilus strains contained 2,254 gene families, and the core genome contained 1,726 gene families. The phylogenetic tree of the core genes in the canine L. acidophilus C5 strain was very close to that of two strains (DSM20079 and NCFM) from humans. We identified 30 evolutionarily accelerated genes in the L. acidophilus C5 strain in the ratio of non-synonymous to synonymous substitutions (dN/dS) analysis. Five of these thirty genes were associated with carbohydrate transport and metabolism. This study provides insights into genetic features and adaptations of the L. acidophilus C5 strain to survive the canine intestinal environment. It also suggests that the evolution of the L. acidophilus genome is closely related to the host's evolutionary adaptation process.

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

  • Sungmin Hwang;Jun Hyeok Yang;Ho Seok Sim;Sung Ho Choi;Byounghee Lee;Woo Young Bang;Ki Hwan Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1416-1426
    • /
    • 2022
  • The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world's oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.