• Title/Summary/Keyword: Genomic diversity

검색결과 247건 처리시간 0.023초

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Kim, Ki Young;Park, Hyo Bin;Kim, Ki Jung;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.521-532
    • /
    • 2021
  • Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.

Structural Variation of Alu Element and Human Disease

  • Kim, Songmi;Cho, Chun-Sung;Han, Kyudong;Lee, Jungnam
    • Genomics & Informatics
    • /
    • 제14권3호
    • /
    • pp.70-77
    • /
    • 2016
  • Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propagated successfully in the human and non-human primate genomes. Alu element is a non-autonomous retrotransposon and therefore retrotransposed using L1-enzyme machinery. The 'master gene' model has been generally accepted to explain Alu element amplification in primate genomes. According to the model, different subfamilies of Alu elements are created by mutations on the master gene and most Alu elements are amplified from the hyperactive master genes. Alu element is frequently involved in genomic rearrangements in the human genome due to its abundance and sequence identity between them. The genomic rearrangements caused by Alu elements could lead to genetic disorders such as hereditary disease, blood disorder, and neurological disorder. In fact, Alu elements are associated with approximately 0.1% of human genetic disorders. The first part of this review discusses mechanisms of Alu amplification and diversity among different Alu subfamilies. The second part discusses the particular role of Alu elements in generating genomic rearrangements as well as human genetic disorders.

Bridging Comparative Genomics and DNA Marker-aided Molecular Breeding

  • Choi, Hong-Kyu;Cook, Douglas R.
    • 한국육종학회지
    • /
    • 제43권2호
    • /
    • pp.103-114
    • /
    • 2011
  • In recent years, genomic resources and information have accumulated at an ever increasing pace, in many plant species, through whole genome sequencing, large scale analysis of transcriptomes, DNA markers and functional studies of individual genes. Well-characterized species within key plant taxa, co-called "model systems", have played a pivotal role in nucleating the accumulation of genomic information and databases, thereby providing the basis for comparative genomic studies. In addition, recent advances to "Next Generation" sequencing technologies have propelled a new wave of genomics, enabling rapid, low cost analysis of numerous genomes, and the accumulation of genetic diversity data for large numbers of accessions within individual species. The resulting wealth of genomic information provides an opportunity to discern evolutionary processes that have impacted genome structure and the function of genes, using the tools of comparative analysis. Comparative genomics provides a platform to translate information from model species to crops, and to relate knowledge of genome function among crop species. Ultimately, the resulting knowledge will accelerate the development of more efficient breeding strategies through the identification of trait-associated orthologous genes and next generation functional gene-based markers.

Design of Distributed Cloud System for Managing large-scale Genomic Data

  • Seine Jang;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.119-126
    • /
    • 2024
  • The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.

Analysis of Genetic Diversity and Population Structure of Wild Strains and Cultivars Using Genomic SSR Markers in Lentinula edodes

  • Lee, Hwa-Yong;Moon, Suyun;Ro, Hyeon-Su;Chung, Jong-Wook;Ryu, Hojin
    • Mycobiology
    • /
    • 제48권2호
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, the genetic diversity and the population structure of 77 wild strains and 23 cultivars of Lentinula edodes from Korea were analyzed using 20 genomic SSRs, and their genetic relationship was investigated. The tested strains of L. edodes were divided into three sub-groups consisting of only wild strains, mainly wild strains and several cultivars, and mainly cultivars and several wild strains by distance-based analysis. Using model-based analysis, L. edodes strains were divided into two subpopulations; the first one consisting of only wild strains and the second one with mainly cultivars and several wild strains. Moreover, AMOVA analysis revealed that the genetic variation in the cultivars was higher than that in the wild strains. The expected and observed heterozygosity and values indicating the polymorphic information content of L. edodes cultivars from Korea were also higher than that of the wild strains. Based on these results, we presume that the cultivars in Korea have developed by using numerous strains from other countries. In conclusion, the usage of wild strains for the development of new cultivars could improve the adaptability of L. edodes to biotic and abiotic stress.

3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs

  • Dawon Hong;Sunjoo Jeong
    • Molecules and Cells
    • /
    • 제46권1호
    • /
    • pp.48-56
    • /
    • 2023
  • Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in post-transcriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.

초위성체 마커를 이용한 산양의 분자유전학적 고찰 (Molecular genetic evaluation of gorals(naemorhedus caudatus raddeanus) genetic resources using microsatellite markers)

  • 서주희;이윤석;전광주;공홍식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1043-1053
    • /
    • 2017
  • 본 연구는 산양 7 품종을 대상으로 (Saanen (88), Laoshan (67), Toggenburg (32), Alpine (12), Anglonubian (9), Jamnapari (7), Black Bengal (4)) 13종의 초위성체 마커 (microsatellite marker)를 활용하여 유전적 다형성 분석을 실시하였다. 대립유전자 수는 4개 (INRA005) 부터 18개 (SRCRSP23)까지 확인되었으며, 관측이형접합율 ($H_{obs}$)과 기대이형접합율 ($H_{\exp}$) 그리고 다형성 정보지수 (PIC) 값은 각각 0.482 ~ 0.786, 0.476 ~ 0.923 그리고 0.392 ~ 0.915로 나타났다. 품종별 유전적 거리를 확인하기 위하여 실시한 주성분분석 (PCoA) 결과는 요인대응분석 (FCA) 분석과 유사한 결과를 보였으며, 동일개체출현빈도는 $2.47{\times}10^{-15}$으로 확인되었다. 따라서 본 연구 결과는 산양 품종 개량 및 보존에 있어 기초자료로써 유용한 자료로 활용 가능 할 것으로 사료된다.

Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers

  • Seo, Joo Hee;Lee, Jun Heon;Kong, Hong Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권10호
    • /
    • pp.1365-1371
    • /
    • 2017
  • Objective: This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC) and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods: In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line) were investigated by performing genotyping using 20 microsatellite markers. Results: The highest genetic distance was observed between RIR and LH (18.9%), whereas the lowest genetic distance was observed between HH and NC (2.7%). In the principal coordinates analysis (PCoA) illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH), although it was highest in LH (0.987) and lowest in CS (0.578). For the cluster 1 it was high in HH (0.582) and in CS (0.368), while for the cluster 4 it was relatively higher in HH (0.392) than other breeds. Conclusion: Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands.