• Title/Summary/Keyword: Genomic Sequence

Search Result 896, Processing Time 0.021 seconds

Genetic analysis of the postsynaptic transmembrane X-linked neuroligin 3 gene in autism

  • Hegde, Rajat;Hegde, Smita;Kulkarni, Suyamindra S.;Pandurangi, Aditya;Gai, Pramod B.;Das, Kusal K.
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2021
  • Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.

Comparative genome characterization of Leptospira interrogans from mild and severe leptospirosis patients

  • Anuntakarun, Songtham;Sawaswong, Vorthon;Jitvaropas, Rungrat;Praianantathavorn, Kesmanee;Poomipak, Witthaya;Suputtamongkol, Yupin;Chirathaworn, Chintana;Payungporn, Sunchai
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.31.1-31.9
    • /
    • 2021
  • Leptospirosis is a zoonotic disease caused by spirochetes from the genus Leptospira. In Thailand, Leptospira interrogans is a major cause of leptospirosis. Leptospirosis patients present with a wide range of clinical manifestations from asymptomatic, mild infections to severe illness involving organ failure. For better understanding the difference between Leptospira isolates causing mild and severe leptospirosis, illumina sequencing was used to sequence genomic DNA in both serotypes. DNA of Leptospira isolated from two patients, one with mild and another with severe symptoms, were included in this study. The paired-end reads were removed adapters and trimmed with Q30 score using Trimmomatic. Trimmed reads were constructed to contigs and scaffolds using SPAdes. Cross-contamination of scaffolds was evaluated by ContEst16s. Prokka tool for bacterial annotation was used to annotate sequences from both Leptospira isolates. Predicted amino acid sequences from Prokka were searched in EggNOG and David gene ontology database to characterize gene ontology. In addition, Leptospira from mild and severe patients, that passed the criteria e-value < 10e-5 from blastP against virulence factor database, were used to analyze with Venn diagram. From this study, we found 13 and 12 genes that were unique in the isolates from mild and severe patients, respectively. The 12 genes in the severe isolate might be virulence factor genes that affect disease severity. However, these genes should be validated in further study.

Alaria alata (Digenea: Diplostomidae) from Korean Raccoon Dog, Nyctereutes procyonoides koreensis, in Korea

  • Lee, Heon Woo;Hong, Eui Ju;Kim, Hyeon Cheol;Ryu, Si Yun;Park, Bae Keun
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.361-365
    • /
    • 2022
  • We report a species of diplostomid fluke recovered from 3 carcasses of wild Korean raccoon dog, Nyctereutes procyonoides koreensis, in Korea. A total of 107 diplostomid flukes were recovered from the small intestines of Korean raccoon dogs, which were obtained from the Gangwon Wildlife Medical Rescue Center. Worms fixed with 10% neutral formalin were subjected to microscopic observation and those fixed in 70% ethanol were used for molecular genomic analysis. The worm was divided into 2 separate parts, forebody and hindbody, with a total length of 3,020-4,090 (3,855) ㎛ and a width of 1,210-1,770 (1,562) ㎛. The boat-shaped forebody has a pair of characteristic tentacular appendage, 2 suckers, holdfast organ, and vitelline follicles. The oval to cylindrical hindbody has reproductive organs. The ovary was round or elliptical and located in the anterior of the testes. Two large testes were slightly segmented and tandemly arranged, occupying almost half of hindbody. The short uterus contained a relatively small number of unembryonated eggs sized 130-140×85-96 ㎛. The partial sequence of 18S rRNA of this fluke was consistent with Alaria alata. Based on the morphological and molecular characteristics, the diplostomid flukes recovered from the small intestine of Korean raccoon dogs were identified as A. alata (Digenea: Diplostomidae).

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

Challenges of Genome Wide Sequencing Technologies in Prenatal Medicine (산전 진단에서의 염기 서열 분석 방법의 의의)

  • Kang, Ji-Un
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.762-769
    • /
    • 2022
  • Genetic testing in prenatal diagnosis is a precious tool providing valuable information in clinical management and parental decision-making. For the last year, cytogenetic testing methods, such as G-banding karyotype analysis, fluorescent in situ hybridization, chromosomal microarray, and gene panels have evolved to become part of routine laboratory testing. However, the limitations of each of these methods demonstrate the need for a revolutionary technology that can alleviate the need for multiple technologies. The recent introduction of new genomic technologies based on next-generation sequencing has changed the current practice of prenatal testing. The promise of these innovations lies in the fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy for prenatal diagnosis. Here, we review the current state of sequencing-based pediatric diagnostics, associated challenges, as well as future prospects.

Mucilaginibacter aquariorum sp. nov., Isolated from Fresh Water

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1553-1560
    • /
    • 2022
  • A Gram-stain-negative, rod-shaped bacterial strain, JC4T, was isolated from a freshwater sample and determined the taxonomic position. Initial identification based on 16S rRNA gene sequences revealed that strain JC4T is affiliated to the genus Mucilaginibacter with a sequence similarity of 97.97% to Mucilaginibacter rigui WPCB133T. The average nucleotide identity and digital DNA-DNA hybridization values between strain JC4T and Mucilaginibacter species were estimated below 80.92% and 23.9%, respectively. Strain JC4T contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and iso-C15:0 as predominant cellular fatty acids. The dominant polar lipids were identified as phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, and two unidentified lipids. The respiratory quinone was MK-7. The genomic DNA G+C content of strain JC4T was determined to be 42.44%. The above polyphasic evidences support that strain JC4T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter aquariorum sp. nov. is proposed. The type strain is JC4T (= KCTC 92230T = LMG 32715T).

Phylogenetic placement of thermophilic ammonium-tolerant bacteria and their distribution in various composts

  • Kazutaka Kuroda
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.671-678
    • /
    • 2023
  • Objective: Previous studies isolated the thermophilic ammonium-tolerant (TAT) bacterium Bacillus sp. TAT105 that grew in composting swine manure with the assimilation of ammonium nitrogen and reduced ammonia emissions during composting. Those studies also investigated the potential for applications of TAT105 to composting. It was observed that the concentration of TAT bacteria, phylogenetically close to TAT105, increased during composting. The objectives of this study were to identify the phylogenetic placement of these TAT bacteria and investigate their distribution in various composts. Methods: The phylogenetic placement of TAT105 was examined based on the sequence of 16S ribosomal RNA gene. The genomic DNA homology between TAT105 and the type strains of bacterial species that were phylogenetically close to TAT105 were examined by DNA-DNA hybridization. Moreover, the tolerances of these strains to NH4Cl and NaCl were analyzed using a cultivation method. Concentrations of TAT bacteria in various composts were evaluated using an agar medium specific to TAT bacteria and polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: TAT105 was most closely related to Bacillus thermolactis and Bacillus kokeshiiformis. Many variants of these species have been detected in various environments, including composts. The type strains of these species displayed TAT characteristics that were similar to those of TAT105. Among the composts examined in this study, TAT bacteria were detected at high concentrations (105 to 109 colony forming units per gram of dry matter) in most of the composts made from cattle manure, swine manure, bark, and excess sludge. Conclusion: TAT bacteria comprised B. thermolactis, B. kokeshiiformis, and their phylogenetically close relatives. They were considered to be adaptable to composting of some certain materials, and a favorable target for searching for strains with some useful function that could be applied to composting of these materials.

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Effect of Synthetic CaM and NFAT Oligodeoxynucleotide on MPP+-Stimulated Mesencephalic Neurons

  • Jihyun Park;Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.35-41
    • /
    • 2023
  • Background: Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis in Parkinson's disease (PD). Overexpression of αSYN significantly promote the Ca2+-Calmodulin (CaM) activity and subsequent nuclear translocation of nuclear factor of activated T cells (NFAT) transcription factor in dopaminergic neurons of midbrain. However, the exact role of Ca2+-CaM and NFAT in PD pathology is yet to be elucidated. Methods: We designed the CaM-NFAT-oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for NFAT transcription factor and CaM mRNA. Then, the effect of CaM-NFAT-ODN on 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity was investigated in mimic PD model in vitro. Results: First, the expression of αSYN and CaM was strongly increased in substantia nigra (SN) of PD and the expression of tyrosine hydroxylase (TH) was strongly increased in control SN. Additionally, the expression of apoptosis marker proteins was strongly increased in SN of PD. Transfection of CaM-NFAT-ODN repressed CaM and pNFAT, the target genes of this ODN in rat embryo primary mesencephalic neurons. It also reduced ERK phosphorylation, a downstream target of these genes. These results demonstrated that CaM-NFAT-ODN operated successfully in rat embryo primary mesencephalic neurons. Transfection of CaM-NFAT-ODN repressed TH reduction, αSYN accumulation, and apoptosis by MPP+-induced neurotoxicity response through Ca2+ signaling and mitogen-activated protein kinases (MAPK) signaling. Conclusion: Synthetic CaM-NFAT-ODN has substantial therapeutic feasibility for the treatment of neurodegenerative diseases.