• Title/Summary/Keyword: Genomic DNA library

Search Result 220, Processing Time 0.022 seconds

Molecular Cloning and Characterization of a recA-like Gene Induced by DNA Damage from a Fluorescent Pseudomonas sp.

  • Ok Bong Kim;Na Young Kim;Jae Hoon Jeong;Si Wouk Kim;Hye Gwang Jeong;Seong Myeong Yoon;Jong Kun Park;Jung Sup Lee
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.229-236
    • /
    • 1999
  • The recA gene plays a central role in genetic recombination and SOS DNA repair in Escherichia coli (E. coli). We have previously identified a 42 kDa RecA-like protein inducible by a variety of DNA damages from a fluorescent Pseudomonas strain sp. and characterized its inducible kinetics. In the present study, we cloned and characterized the gene encoding the RecA-like protein by immunological screening of Pseudomonas genomic expression library using polyclonal E. coli anti-RecA antibodies as a probe. From 10$^{5}$ plaques screened, five putative clones were finally isolated. Southern blot analysis indicated that four clones had the same DNA inserts and the recA-like gene was located within the 3.2 kb EcoRI fragment of Pseudomonas chromosomal DNA. In addition, the cloned recA-like gene was transcribed into an RNA transcript approximately 1.1 kb in size, as judged by Northern blot analysis. The cellular level of RNA transcript of the cloned recA-like gene was increased to an average of 5.15- fold upon treatment with DNA damaging agents such as ultraviolet (UV)- light, nalidixic acid (NA), methyl methanesulfonate (MMS), and mitomycin-C (MMC). These results suggest that the cloned gene is inducible by DNA damage similarly to the recA gene in E. coli. However, the cloned gene did not restore the DNA damage sensitivity of the E. coli recA-mutant.

  • PDF

Cloning and Characterization of DAP10 homologue gene from Olive Flounder, Paralichthys olivaceus

  • Park, Chan-Il;Kim, Mu-Chan;Hwang, Jee-Youn;Kim, Ki-Hyuk;Kim, Joo-Won
    • Journal of fish pathology
    • /
    • v.19 no.3
    • /
    • pp.227-233
    • /
    • 2006
  • Olive flounder immunoreceptor DAP10 homologue cDNA was cloned from a peripheral blood lymphocytes (PBLs) cDNA library. The length of the olive flounder DAP10 cDNA is 473bp and it contains an open reading frame of 234bp. The predicted polypeptide sequence is 78 amino acids, consisting of a 22-amino acid leader, an 11-amino acid extracellular domain, a 21-amino acid transmembrane segment, and a 24-amino acid cytoplasmic domain. The amino acid sequence of olive flounder DAP10 has 56%, 50%, 32%, 31%, and 31% sequence identity with zebrafish DAP10, catfish DAP10, cattle DAP10, rat DAP10 and Monkey DAP10, respectively. Olive flounder DAP10 has a conserved aspartic acid in the transmembrane domain and a phophatidylinositol-3 kinase-binding site (YxxM/V) in the cytoplasmic region. Genomic organization reveals that olive flounder DAP10 comprises five exons and four introns. A phylogenetic analysis based on the deduced amino acid sequence grouped the olive flounder DAP10 with other species DAP10. In RT-PCR analysis, DAP10 transcripts were detected predominantly in PBLs, kidney, spleen and intestine.

Cloning and Characterization of the Urease Gene Cluster of Streptococcus vestibularis ATCC49124

  • Kim Geun-Young;Lee Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.286-290
    • /
    • 2006
  • A genomic library of Streptococcus vestibularis ATCC49124 was constructed in an E. coli plasmid vector, and the urease-positive transformants harboring the urease gene cluster were isolated on Christensen-urea agar plates. The minimal DNA region required for urease activity was located in a 5.6 kb DNA fragment, and a DNA sequence analysis revealed the presence of a partial ureI gene and seven complete open reading frames, corresponding to ureA, B, C, E, F, G, and D, respectively. The nucleotide sequence over the entire ure gene cluster and 3'-end flanking region of S. vestibularis was up to 95% identical to that of S. salivarius, another closely related oral bacterium, and S. thermophilus, isolated from dairy products. The predicted amino acid sequences for the structural peptides were 98-100% identical to the corresponding peptides in S. salivarius and S. thermophilus, respectively, whereas those for the accessory proteins were 96-100% identical. The recombinant E. coli strain containing the S. vestibularis ure gene cluster expressed a high level of the functional urease holoenzyme when grown in a medium supplemented with 1 mM nickel chloride. The enzyme was purified over 49-fold by using DEAE-Sepharose FF, Superdex HR 200, and Mono-Q HR 5/5 column chromatography. The specific activity of the purified enzyme was 2,019 U/mg, and the Michaelis constant ($K_{m}$) of the enzyme was estimated to be 1.4 mM urea. A Superose 6HR gel filtration chromatography study demonstrated that the native molecular weight was about 196 kDa.

Genomic Diversity of Helicobacter pylori

  • Lee, Woo-Kon;Choi, Sang-Haeng;Park, Seong-Gyu;Choi, Yeo-Jeong;Choe, Mi-Young;Park, Jeong-Won;Jung, Sun-Ae;Byun, Eun-Young;Song, Jae-Young;Jung, Tae-Sung;Lee, Byung-Sang;Baik, Seung-Chul;Cho, Myung-Je
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.519-532
    • /
    • 1999
  • Helicobacter pylori is a causative agent of type B gastritis and plays a central role in the pathogenesis of gastroduodenal ulcer and gastric cancer. To elucidate the host-parasite relationship of the H. pylori infection on the basis of molecular biology, we tried to evaluate the genomic diversity of H. pylori. An ordered overlapping bacterial artificial chromosome (BAC) library of a Korean isolate, H. pylori 51 was constructed to set up a genomic map. A circular physical map was constructed by aligning ApaI, NotI and SfiI-digested chromosomal DNA. When the physical map of H. pylori 51 was compared to that of unrelated strain, H. pylori 26695, completely different restriction patterns were shown. Fifteen known genes were mapped on the chromosome of H. pylori 51 and the genetic map was compared with those of strain 26695 and J99, of which the entire genomic sequences were reported. There were some variability in the gene location as well as gene order among three strains. For further analysis on the genomic diversity of H. pylori, when comparing the genomic structure of 150 H. pylori Korean isolates with one another, genomic macrodiversity of H. pylori was characterized by several features: whether or not susceptible to restriction digestion of the chromsome, variation in chromosomal restriction fingerprint and/or high frequency of gene rearrangement. We also examined the extent of allelic variation in nucleotide or deduced amino acid sequences at the individual gene level. fucT, cagA and vacA were confirmed to carry regions of high variation in nucleotide sequence among strains. The plasticity zone and strain-specific genes of H. pylori 51 were analyzed and compared with the former two genomic sequences. It should be noted that the H. pylori 51-specific sequences were dispersed on the chromosome, not congregated in the plasticity zone unlike J99- or 26695-specific genes, suggesting the high frequency of gene rearrangement in H. pylori genome. The genome of H. pylori 51 shows differences in the overall genomic organization, gene order, and even in the nucleotide sequences among the H. pylori strains, which are far greater than the differences reported on the genomic diversity of H. pylori.

  • PDF

Isolation and Sequencing of the cDNA Encoding ${\beta}-tubulin$ from Pleurotus sajor-caju (여름느타리버섯으로부터 ${\beta}-tubulin$ cDNA의 분리 및 염기서열 결정)

  • Kim, Beom-Gi;Shin, Pyung-Gyun;Jeong, Mi-Jeong;Park, Soo-Chul;Yoo, Young-Bok;Ryu, Jin-Chang;Kwon, Suk-Tae
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.1-5
    • /
    • 1997
  • The cDNA encoding ${\beta}-tubulin$ of Pleurotus sajor-caju was isolated using an internal gene segment probe amplified by polymerase chain reaction (PCR) of genomic DNA and by cDNA library screening. The cDNA was consisted of 1560 nucleotides(nt), including a 5'-untranslation region (UTR) of 27nt, an open reading frame (ORF) of 1341nt, and a 3'-UTR of 191nt. The ORF encoded a protein of 446 amino acids(aa), which shows over 80% homology with ${\beta}-tubulins$ of other filamentous fungi. Southern hybridization analysis showed that there were two isotypes of ${\beta}-tubulin$ genes in P. sajor-caju. Through sequence analysis we found that ${\beta}-tubulin$ had a unusual $Cys^{165}$ residue, which might be a significant factor for the insensitivity of fungi to fungicide benomyl.

  • PDF

Korean BAC Library Construction and Characterization of HLA-DRA, HLA-DRB3

  • Park, Mi-Hyun;Lee, Hye-Ja;Bok, Jeong;Kim, Cheol-Hwan;Hong, Seong-Tshool;Park, Chan;Kimm, Ku-Chan;Oh, Berm-Seok;Lee, Jong-Young
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.418-425
    • /
    • 2006
  • A human bacterial artificial chromosome (BAC) library was constructed with high molecular weight DNA extracted from the blood of a male Korean. This Korean BAC library contains 100,224 clones of insert size ranging from 70 to 150 kb, with an average size of 86 kb, corresponding to a 2.9-fold redundancy of the genome. The average insert size was determined from 288 randomly selected BAC clones that were well distributed among all the chromosomes. We developed a pooling system and three-step PCR screen for the Korean BAC library to isolate desired BAC clones, and we confirmed its utility using primer pairs designed for one of the clones. The Korean BAC library and screening pools will allow PCR-based screening of the Korean genome for any gene of interest. We also determined the allele types of HLA-DRA and HLA-DRB3 of clone KB55453, located in the HLA class II region on chromosome 6p21.3. The HLA-DRA and DRB3 genes in this clone were identified as the DRA*010202 and DRB3*01010201 types, respectively. The haplotype found in this library will provide useful information in future human disease studies.

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok;Yang, Sang-Hwan;Bae, Tae-Woong;Kang, Hong-Gyu;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

Cloning of the Genomic DNA Which Complements the Drug-Hypersensitivity of Saccharomyces cerevlsiae

  • Lee, Yun-Sik;Park, Kie-In
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.167-172
    • /
    • 1997
  • The yeast Saccharomyces cerevisiae, mutant CH117, shows a drug-hypersensitivity (dhs) to cycloheximide, bleomycin, actinomycin D, 5-fluorouracil. nystatin, nigericin and several other antibiotics. CH 117 was also temperature-sensitive (ts). being unable to grow at $37^{\circ}C$ and secreted more invertase and acid phosphatase into the medium than the parent yeast. CH117 grows very slowly and the cell shape is somewhat larger and more sensitive to zymolyase than the wild type cells. Light microscopic and electron microscopic observation also revealed abnormality of the mutant cell wall. These characteristics indicate that CH117 has a defect in an essential component of the cell surface and that the cell wall which performs barrier functions has become leaky in the mutant. We screened a genomic library of wild type yeast for clones that can complement the mutation of CH117. A plasmid, pCHX1, with an insert of 3.6 kilobases (kbs) could complement the dhs and ts of CH117. Deletion and subcloning of the 3.6 kb insert showed that a gene for the complementation of mutant phenotypes was located in 1.9 kbs Puvll-Hindlll fragment.

  • PDF