• Title/Summary/Keyword: Genome Analysis

Search Result 2,396, Processing Time 0.025 seconds

Development of an efficient genotyping-by-sequencing (GBS) library construction method for genomic analysis of grapevine

  • Jang, Hyun A;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.495-503
    • /
    • 2017
  • Genotyping-by-sequencing (GBS) is an outstanding technology for genotyping and single nucleotide polymorphism (SNP) discovery compared to next generation sequencing (NGS) because it can save time when analyzing large-scale samples and carries a low cost per sample. Recently, studies using GBS have been conducted on major crops and, to a greater extent, on fruit crops. However, many researchers have some problems due to low GBS efficiency resulting from low quality GBS libraries. To overcome this limitation, we developed an efficient GBS library construction method that regulates important conditions such as restriction enzymes (RE) digestion and a PCR procedure for grapevine. For RE digestion, DNA samples are digested with ApeKI (3.6U) at $75^{\circ}C$ for 5 hours and adapters are ligated to the ends of gDNA products. To produce suitable PCR fragments for sequencing, we modified the PCR amplification conditions; temperature cycling consisted of $72^{\circ}C$ (5 min), $98^{\circ}C$ (30 s), followed by 16 cycles of $98^{\circ}C$ (30 s), $65^{\circ}C$ (30 s), $72^{\circ}C$ (20 s) with a final extension step. As a result, we had obtained optimal library construct sizes (200 to 400 bp) for GBS analysis. Furthermore, it not only increased the mapping efficiency by approximately 10.17% compared to the previous method, but also produced mapped reads which were distributed equally on the19 chromosomes in the grape genome. Therefore, we suggest that this system can be used for various fruit crops and is expected to increase the efficiency of various genomic analysis performed.

Cluster Analysis of SNPs with Entropy Distance and Prediction of Asthma Type Using SVM (엔트로피 거리와 SVM를 이용한 SNP 군집분석과 천식 유형 예측)

  • Lee, Jung-Seob;Shin, Ki-Seob;Wee, Kyu-Bum
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Single nucleotide polymorphisms (SNPs) are a very important tool for the study of human genome structure. Cluster analysis of the large amount of gene expression data is useful for identifying biologically relevant groups of genes and for generating networks of gene-gene interactions. In this paper we compared the clusters of SNPs within asthma group and normal control group obtained by using hierarchical cluster analysis method with entropy distance. It appears that the 5-cluster collections of the two groups are significantly different. We searched the best set of SNPs that are useful for diagnosing the two types of asthma using representative SNPs of the clusters of the asthma group. Here support vector machines are used to evaluate the prediction accuracy of the selected combinations. The best combination model turns out to be the five-locus SNPs including one on the gene ALOX12 and their accuracy in predicting aspirin tolerant asthma disease risk among asthmatic patients is 66.41%.

Analysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome

  • Kim, Koung Li;Choi, Chanmi;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse model of MFS, FBN1 hypomorphic mouse (mgR/mgR), we characterized the aortic gene expression profiles during the progression of the MFS. Homozygous mgR mice exhibited MFS-like phenotypic features, such as fragmentation of elastic fibers throughout the vessel wall and were graded into mgR1-4 based on the pathological severity in aortic walls. Comparative gene expression profiling of WT and four mgR mice using microarrays revealed that the changes in the transcriptome were a direct reflection of the severity of aortic pathological features. Gene ontology analysis showed that genes related to oxidation/reduction, myofibril assembly, cytoskeleton organization, and cell adhesion were differentially expressed in the mgR mice. Further analysis of differentially expressed genes identified several candidate genes whose known roles were suggestive of their involvement in the progressive destruction of aorta during MFS. This study is the first genome-wide analysis of the aortic gene expression profiles associated with the progression of MFS. Our findings provide valuable information regarding the molecular pathogenesis during MFS progression and contribute to the development of new biomarkers as well as improved therapeutic strategies.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Lin28 regulates the expression of neuropeptide Y receptors and oocyte-specific homeobox genes in mouse embryonic stem cells

  • Park, Geon Tae;Seo, You-Mi;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.87-93
    • /
    • 2012
  • Objective: Lin28 has been known to control the proliferation and pluripotency of embryonic stem cells. The purpose of this study was to determine the downstream effectors of Lin28 in mouse embryonic stem cells (mESCs) by RNA interference and microarray analysis. Methods: The control siRNA and Lin28 siRNA (Dharmacon) were transfected into mESCs. Total RNA was prepared from each type of transfected mESC and subjected to reverse transcription-polymerase chain reaction (RT-PCR) analysis to confirm the downregulation of Lin28. The RNAs were labeled and hybridized with an Affymetrix Gene-Chip Mouse Genome 430 2.0 array. The data analysis was accomplished by GenPlex 3.0 software. The expression levels of selected genes were confirmed by quantitative real-time RT-PCR. Results: According to the statistical analysis of the cDNA microarray, a total of 500 genes were altered in Lin28-downregulated mESCs (up-regulated, 384; down-regulated, 116). After differentially expressed gene filtering, 31 genes were selected as candidate genes regulated by Lin28 downregulation. Among them, neuropeptide Y5 receptor and oocyte-specific homeobox 5 genes were significantly upregulated in Lin28-downregulated mESCs. We also showed that the families of neuropeptide Y receptor (Npyr) and oocyte-specific homeobox (Obox) genes were upregulated by downregulation of Lin28. Conclusion: Based on the results of this study, we suggest that Lin28 controls the characteristics of mESCs through the regulation of effectors such as the Npyr and Obox families.

Relationship between tooth loss and carotid intima-media thickness in Korean adults

  • Chin, Ui-Jung;Ji, Suk;Lee, Su-Young;Ryu, Jae-Jun;Lee, Jung-Bok;Shin, Chol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.122-127
    • /
    • 2010
  • PURPOSE. The aim of this study was to examine the relationship between tooth loss and sub-clinical atherosclerosis in Korean adults. MATERIALS AND METHODS. The subjects were part of a cohort study conducted in Ansan city by the Korea University medical school as part of the Korean Genome project. 749 subjects over than 40 years old were evaluated. After taking panoramic radiography, the amount of tooth loss was calculated. The intima-media thickness (IMT) was assessed by using ultrasonography at the common carotid artery. Traditional cardiovascular risk factors for atherosclerosis were also evaluated. The relationship between tooth loss and the IMT was evaluated using ANOVA with Scheffe's multiple comparison method in univariate analysis. Multiple regression analysis was also performed to determine the significance between the IMT and tooth loss. RESULTS. With age, tooth loss increased, but there was no significant increase in other traditional cardiovascular risk factors. Univariate analysis revealed the IMT to be positively related with the amount of tooth loss. Regression analysis of the IMT in the anterior and posterior tooth loss revealed that only the posterior tooth loss was significantly related with the IMT at all sites of the common carotid artery (right far wall, P = .015; left far wall, P = .008; right near wall, P < .001; left near wall, P = .001). CONCLUSION. This study verified the positive relationship between the increased tooth loss at the posterior area and the accumulation of atheroma in arteries.

1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis

  • Kang, Dong Soo;Shin, Eunsim;Yu, Jeesuk
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.14-18
    • /
    • 2016
  • Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000-10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year-and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia.

Sequence Variation in Superoxide Dismutase Gene of Toxoplasma gondii among Various Isolates from Different Hosts and Geographical Regions

  • Wang, Shuai;Cao, Aiping;Li, Xun;Zhao, Qunli;Liu, Yuan;Cong, Hua;He, Shenyi;Zhou, Huaiyu
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • Toxoplasma gondii, an obligate intracellular protozoan parasite of the phylum Apicomplexa, can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals. The aim of this study was to investigate whether superoxide dismutase (SOD) of T. gondii can be used as a new marker for genetic study or a potential vaccine candidate. The partial genome region of the SOD gene was amplified and sequenced from 10 different T. gondii isolates from different parts of the world, and all the sequences were examined by PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results showed that partial SOD gene sequences ranged from 1,702 bp to 1,712 bp and A + T contents varied from 50.1% to 51.1% among all examined isolates. Sequence alignment analysis identified total 43 variable nucleotide positions, and these results showed that 97.5% sequence similarity of SOD gene among all examined isolates. Phylogenetic analysis revealed that these SOD sequences were not an effective molecular marker for differential identification of T. gondii strains. The research demonstrated existence of low sequence variation in the SOD gene among T. gondii strains of different genotypes from different hosts and geographical regions.

Phylogenetic analysis of marine birnavirus (MABV) isolated from cultured starry flounder Platichthys stellatus and olive flounder Paralichthys olivaceus in Korea (양식 강도다리, Platichthys stellatus 및 넙치, Paralichthys olivaceus에서 분리한 marine birnavirus (MABV)의 phylogenetic 분석)

  • Park, Shin-Hoo;Park, Myoung-Ae;Cho, Mi-Young
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.211-218
    • /
    • 2009
  • In this study, we have compared the genome of marine birnavirus (MABV) detected from starry flounder Platichthys stellatus and olive flounder Paralichthys olivaceus. A molecular analysis based on the nucleotide sequence (433 bases) of VP2-NS-VP3 region revealed that MABV (08-KU) from starry flounder showed 98% similarity with MABV Y6 isolated from Yellowtail Seriola quinqueradita in Japan (Accession no: AY283781) and with other aquabirnaviruses identify more than 76%. Comparison with MABV strains (06-KP, 08-KC) from olive flounder and MABV Y6 strain showed 97-98% sequence identities. Phylogenetic analysis was performed in order to examine the relationship among previously determined aquatic birnaviruses isolates showed that MABV and IPNV strains were classified into seven clusters. Three isolates from starry flounder and olive flounder in this study, belong to the genogroup VII including MABV Y6 strain and other aquabirnaviruses isolated from marine fish and molluscan shellfish in Japan. This report is the first description of a MABV from starry flounder in Korea.

Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

  • Jung, Sung-Min;Hur, Youn-Young;Preece, John E.;Fiehn, Oliver;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.489-499
    • /
    • 2016
  • Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.