• Title/Summary/Keyword: Genetically modified tumor cell

Search Result 11, Processing Time 0.026 seconds

CD8-dependent Tumor Growth Inhibition by Tumor Cells Genetically Modified with 4-1BBL

  • Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.329-333
    • /
    • 2021
  • We previously identified that tumor cells genetically modified with a 4-1BBL co-stimulatory molecule had anticancer effects in a CT26 mouse colorectal tumor model. To identify the distinction between immune cells in a mouse tumor model treated with tumor cells genetically modified with 4-1BBL or β-gal, we examined the immune cells in CT26-WT, CT26-βgal, and CT26-4-1BBL tumor bearing mice 21 days after tumor cell administration. The CD8+ T cells population in mice treated with tumor cells genetically modified with 4-1BBL was significantly increased on day 21 compared to that of tumor cells genetically modified with β-gal in the spleen and tumor tissue. The CD4+ T cell population was not different between the two mice groups. The Foxp3+CD25high CD4 T cell population decreased on day 21 in tumor tissues, but the decrease was not significant. We also found that CD8 T cells had pivotal roles in inhibiting tumor growth by treating mice with ant-CD4 and CD8 antibodies. These results suggest that tumor cells genetically modified with 4-1BBL could inhibit tumor growth by affecting on CD8 T lymphocytes.

Development of Genetically Modified Tumor Cell Containing Co-stimulatory Molecule

  • Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.398-406
    • /
    • 2019
  • Cancer immunotherapy using gene-modified tumor cells is safe and customized cancer treatment method. In this study, we made gene-modified tumor cells by transferring costimulatory molecules, 4-1BBL and OX40L, into tumor cells using lentivirus vector, and identified anti-cancer effect of gene-modified tumor cells in CT26 mouse colorectal tumor model. We construct pLVX-puro-4-1BBL, -OX40L vector for lentivirus production and optimized the transfection efficiency and transduction efficiency. The transfection efficiency is maximal at DNA:cationic polymer = 1:0.5 and DNA 2 ㎍ for lentivirus production. Then, the lentiviral including 4-1BBL and OX40L was used to deliver CT26 mouse tumor cells to establish optimal delivery conditions according to the amount of virus. The transduction efficiency is maximal at 500 μL volume of lentiviral stock without change in cell shape or growth rate. CT26-4-1BBL, CT26-OX40L significantly inhibited the tumor growth compare with CT26-WT or CT26-β-gal cell line. These data showed the possibility the use of genetically modified tumor cells with costimulatory molecule as cancer immunotherapy agent.

Anti-tumor Effect of 4-1BBL Modified Tumor Cells as Preventive and Therapeutic Vaccine

  • Hong Sung Kim
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.312-316
    • /
    • 2022
  • We have previously reported that genetically modified tumor cells with 4-1BBL have anti-cancer effects in a CT26 mouse colorectal tumor model. In this study, genetically modified tumor cells with 4-1BBL were evaluated for their potential as candidates for preventive and therapeutic cancer vaccine. To identify the effect of preventive and therapeutic vaccine of genetically modified tumor cells with 4-1BBL, tumor growth pattern of CT26-4-1BBL as a cancer vaccine was examined compared to CT26-beta-gal. In therapeutic vaccination, CT26-WT was inoculated into mice and then vaccinated mice with doxorubicin (Dox)-treated CT26-beta-gal and CT26-4-1BBL (single or three times). Triple vaccination with Dox-treated tumor cell inhibited tumor growth compared to single vaccination. Vaccination with CT26-4-1BBL showed an efficient tumor growth inhibition compared to vaccination with CT26-beta-gal. For preventive vaccination, Dox-treated CT26-beta-gal and CT26-4-1BBL was vaccinated into mice with three times and then administered mice with CT26-WT. Preventive vaccination with CT26-4-1BBL showed no tumor growth. Preventive vaccination with CT26-beta-gal also led to tumor-free mice. These results suggest that genetically modified tumor cells with 4-1BBL can be used as therapeutic or preventive cancer vaccine.

Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

  • Kim, So-Youn
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development.

The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector (Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1271-1284
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ cDNA transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate whether the levels of TNF receptor mRNA expression and soluble TNF receptor release from cancer cells are changed after TNF-$\alpha$ cDNA transfection. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, EUSA, MTT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and evaluated the TNF receptor mRNA expression with Northern blot analysis and soluble TNF receptor release with EUSA. Results : The TNF receptor mRNA expressions of parental cells and genetically modified cells were not significantly different. The soluble TNF receptor levels of media from genetically modified cells were lower than those from parental cells. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the TNF receptor and the soluble TNF receptor expression.

  • PDF

Generation of Renal Cell Carcinoma-specific CD4+/CD8+ T Cells Restricted by an HLA-39 from a RCC Patient Vaccinated with GM-CSF Gene-Transduced Tumor Cells

  • Jun, Do Youn;Moutner, Joseph;Jaffee, Elizabeth
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2003
  • Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccines induce very potent systemic anti-tumor immunity in preclinical and clinical models. Our previous phase I clinical trial in patients with metastatic renal cell carcinoma (RCC) has demonstrated both immune cell infiltration at vaccine sites and T cell-mediated delayed-type hypersensitivity (DTH) response to whole tumor cell vaccines. Methods: To investigate the immune responses to autologous genetically- modified tumor cell vaccines, tumor-specific $CD8^+$ T cell lines were generated from peripheral blood lymphocytes (PBL) of a RCC patient 1.24 by repeated in vitro stimulation with either B7.1-transduced autologous RCC tumor cells or B7.1-transduced autologous tumor cells treated with interferon gamma ($IFN{\gamma}$), and cloned by limiting dilution. Results: Among several RCC-specific cytotoxic T lymphocytes (CTLs), a $CD4^+/CD8^+$ double positive T cell clone (17/A2) appeared to recognize $IFN{\gamma}$-treated autologous RCC restricted by HLA-B39. The 17/A2 also recognized other HLA-B39 positive RCC tumor cells after $IFN{\gamma}$ treatment. Conclusion: These results demonstrate that autologous RCC vaccination successfully generates the tumor-specific CTL 17/A2, and suggest that the presentation and recognition of the tumor antigen by the 17/A2 might be upregulated by $IFN{\gamma}$.

iPSC-Derived Natural Killer Cells for Cancer Immunotherapy

  • Karagiannis, Peter;Kim, Shin-Il
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.541-548
    • /
    • 2021
  • The discovery of human pluripotent stem cells (PSCs) at the turn of the century opened the door to a new generation of regenerative medicine research. Among PSCs, the donors available for induced pluripotent stem cells (iPSCs) are greatest, providing a potentially universal cell source for all types of cell therapies including cancer immunotherapies using natural killer (NK cells). Unlike primary NK cells, those prepared from iPSCs can be prepared with a homogeneous quality and are easily modified to exert a desired response to tumor cells. There already exist several protocols to genetically modify and differentiate iPSCs into NK cells, and each has its own advantages with regards to immunotherapies. In this short review, we detail the benefits of using iPSCs in NK cell immunotherapies and discuss the challenges that must be overcome before this approach becomes mainstream in the clinic.

The Role of MnSOD in the Mechanisms of Acquired Resistance to TNF (TNF에 대한 내성획득에서 MnSOD의 역할에 관한 연구)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1353-1365
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF -resistance in TNF-$\alpha$ cDNA transfected cancer cells would be. an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of MnSOD, an antioxidant enzyme, in the acquired resistance to TNF of TNF-$\alpha$ cDN A transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and the changes of MnSOD mRNA expressions with Northern blot analysis. Results : The MnSOD mRNA expressions of parental cells and genetically modified cells of WEHI164 and ME180 cells(both are naturally TNF sensitive) were not significantly different The MnSOD mRNA expressions of genetically modified cells of NCI-H2058 and A549(both are naturally TNF resistant) were higher than those of the parental cells, while those of parental cells with exogenous TNF were also elevated. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the MnSOD expression, but the difference in natural TNF sensitivity of each cell may be associated with the level of the MnSOD expression.

  • PDF

Gene Therapy Using GM-CSF Gene Transferred by a Defective Infectious Single-cycle Herpes Virus in Micro-residual Organotropic Head and Neck Squamous Cell Cancer Model (향장기성 두경부 편평세포암종의 미세잔존암 모델에서 GM-CSF 유전자를 이입시킨 제한복제성 헤르페스바이러스 벡터를 이용한 종양백신의 유전자 치료)

  • Kim Se-Heon;Choi Eun-Chang;Kim Han-Su;Chang Jung-Hyun;Kim Ji-Hoon;Kim Kwang-Moon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • Background and Objectives: The Herpes Simplex type 2 Defective Infectious Single Cycle virus (DISC virus) is attenuated virus originally produced as viral vaccines but are also efficient gene transfer vehicle. The main goals of this study were to examine the efficiencies of the gene transfer using DISC vectors for various head and neck squamous cell carcinoma cell lines and to evaluate the efficacy of vaccination with DISC virus carrying a immunomodulatory genes (GM-CSF) as cancer therapy in a organotopic oral cavity squamous cell cancer model. Materials and Methods : We determinated the gene transfer efficiency of DISC virus by x-gal stain method and proved gene and protein expression of DISC-GMCSF transfected SCCVII cells by RT-PCR and ELISA method. Also we evaluated the ex vivo vaccination effects of SCCVII/GMCSF (DISC-GMCSF transfected SCCVII vaccine) vaccine on preventing the recurrence of micro-residual tumor. After the vaccination of SCCVII/GMCSF, specific cytotoxic T-cell responses was evaluated by CTL assay. Results: At an MOI of 10 DISC virus showed 64-88% of transfection rates in various head and neck squamous cancer cell lines. SCCVII cells transduced by DISC virus vector (MOI=10) carrying the GM-CSF gene, produced 4.5 nanogram quantities of GM-CSF per $10^6$ cells. In vivo vaccination using tumor cells transduced ex vivo with DISC-GMCSF resulted in better protection rate against subsequent tumor recurrence in organotopic oral cavity cancer model. Although tumor free survival rate was not statistically significantly increased in vaccination group (p=0.078), tumor specific cytotocic T-cell responses were significantly increased in SCCVII/GMCSF vaccination group. Conclusion: These data demonstrate that; 1) The DISC virus vector is capable of efficient gene transfer to various head and neck squamous cancer cell lines, 2) GM-CSF secreting genetically modified tumor vaccine (SCCVII/GMCSF) efficiently protected against tumor recurrence in organotopic micro-residual oral cavity cancer model and produced tumor specific cytotoxic T-cell response. DISC virus-mediated, cytokine gene transfer may prove to be useful as a clinical therapy for head and neck cancers.

Oncolytic Viruses - A New Era for Cancer Therapy (종양 용해성 바이러스-암 치료에서의 새 시대)

  • Ngabire, Daniel;Niyonizigiye, Irvine;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.824-835
    • /
    • 2019
  • In recent decades, oncolytic viruses (OVs) have extensively been investigated as a potential cancer drug. Oncolytic viruses have primarily the unique advantage in the fact that they can only infect and destroy cancer cells. Secondary, oncolytic viruses induce the activation of specific adaptive immunity which targets tumor-associated antigens that were hidden during the initial cancer progression. In 2015, one genetically modified oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the American Food and Drug Administration (FDA) for the treatment of melanoma. Currently, various oncolytic viruses are being investigated in clinical trials as monotherapy or in combination with preexistent cancer therapies like immunotherapy, radiotherapy or chemotherapy. The efficacy of oncolytic virotherapy relies on the balance between the induced anti-tumor immunity and the anti-viral response. Despite the revolutionary outcome, the development of oncolytic viruses for the treatment of cancer faces a number of obstacles such as delivery method, neutralizing antibodies and induction of antiviral immunity due to the complexity, variability and reactivity of tumors. Intratumoral administration has been successful reducing considerably solid tumors with no notable side effects unfortunately some tumors are not accessible (brain) and require a systemic administration of the oncolytic viruses. In order to overcome these hurdles, various strategies to enhance the efficacy of oncolytic viruses have been developed which include the insertion of transgenes or combination with immune-modulatory substances.