• 제목/요약/키워드: Genetically engineered mouse

검색결과 24건 처리시간 0.025초

Exercise-induced beige adipogenesis of iWAT in Cidea reporter mice

  • Kim, Jin Kyung;Go, Hye Sun;Kim, Sol Pin;Kim, Il Yong;Lee, Yun Hee;Oh, Seung Hyun;Lee, Ho;Seong, Je Kyung
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.187-191
    • /
    • 2022
  • Obesity is caused by an imbalance between energy intake and energy expenditure. Exercise is attracting attention as one of the ways to treat obesity. Exercise induces 'beige adipogenesis' in white adipose tissue, increasing total energy expenditure via energy dissipation in the form of heat. Also, beige adipogenesis can be induced by treatment with a beta-adrenergic receptor agonist. We developed a Cidea-dual reporter mouse (Cidea-P2A-Luc2-T2A-tdTomato, Luciferase/tdTomato) model to trace and measure beige adipogenesis in vivo. As a result, both exercise and injection of beta-adrenergic receptor agonist induced beige adipogenesis and was detected through fluorescence and luminescence. We confirmed that exercise and beta-adrenergic receptor agonist induce beige adipogenesis in Cidea-dual reporter mouse, which will be widely used for detecting beige adipogenesis in vivo.

유전자 조작된 PRV-BaBlu를 이용한 흰쥐 위 신경지배 편도핵의 동정 (Localization of Amygdaloid Nucleus Innervating the Stomach Using Genetically Engineered PRV-BaBlu in Rat Brain)

  • 송주민
    • The Journal of Korean Physical Therapy
    • /
    • 제23권5호
    • /
    • pp.35-41
    • /
    • 2011
  • Purpose: This study was carried out to investigate the spatiotemporal localization of the amygdaloid nucleus innervating the rat stomach using PRV-BaBlu, which has been known to be an excellent type of neurotracer with the ability to transpass the neuronalsynaptic cleft. Methods: Ninety Sprague-Dawley rats (250~300 g) that were injected with PRV-BaBlu into the stomach were randomly divided into 3, 4 and 5 day groups (each group n=30). $2{\mu}l$ of PRV-BaBlu, a genetically modified strain of PRV-Bartha with the lac-Z gene,was injected into the rat stomach and immunostained with a mouse anti-${\beta}$-galactosidase at 3, 4 and 5 days after the virus injection. Results: The PRV-BaBlu infected the neurons in the amygdaloid nucleus, and the degree of viral infection in experimental animals showed a tendency to increase significantly with time (p<0.05). The neurons between the left and right amygdaloid nucleus significantly differ (p<0.05). Conclusion: This showed that PRV-BaBlu was an excellent neurotracer for localizing the amygdaloid nucleus, and the amygdaloid nucleus has a sensory input and motor output on stomach movement, influencing emotional behavior.

Optimization of In Vitro Murine Embryo Culture Condition based on Commercial M16 Media

  • Lee, Soo Jin;Bae, Hee Sook;Koo, Ok Jae
    • 한국수정란이식학회지
    • /
    • 제30권4호
    • /
    • pp.315-317
    • /
    • 2015
  • In vitro culture of murine embryos is an important step for in vitro production systems including in vitro fertilization and generations of genetically engineered mice. M16 is widely used commercialized culture media for the murine embryos. Compared to other media such as potassium simplex optimization medium, commercial M16 (Sigma) media lacks of amino acid, glutamine and antibiotics. In the present study, we optimized M16 based embryo culture system using commercialized antibiotics-glutamine or amino acids supplements. In vivo derived murine zygote were M16 media were supplemented with commercial Penicillin-Streptomycin-Glutamine solution (PSG; Gibco) or MEM Non-Essential Amino Acids solution (NEAA; Gibco) as experimental design. Addition of PSG did not improved cleavage and blastocyst rates. On the other hand, cleavage rate is not different between control and NEAA treated group, however, blastocyst formation is significantly (P<0.05) improved in NEAA treated group. Developmental competence between PSG and NEAA treated groups were also compared. Between two groups, cleavage rate was similar. However, blastocyst formation rate is significantly improved in NEAA treated group. Taken together, beneficial effect of NEAA on murine embryos development was confirmed. Effect of antibiotics and glutamine addition to M16 media is still not clear in the study.

Hormone induced recipients for embryo transfer in mice

  • Lee, Yeonmi;Kang, Eunju
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.247-252
    • /
    • 2021
  • Embryo transfer (ET) in the animal is an important procedure to generate genetically engineered animals and conserve genetic resources. For ET experiments in mice, pseudopregnant recipients are usually prepared with proestrus stage of females and vasectomized males. However, this conventional method is inefficient because the size of female colonies should be large to select only the proestrus stage in the estrous cycle and the surgical procedures are required to generate vasectomized males. In this study, we established a simple and efficient protocol to prepare ET recipients using the estrous synchronization with hormone injection and the mating with wild male mice. The delivery rate of ET recipients tended to be increased with estrous synchronization using hormone injection (100%) compared to the conventional method (71%). Further, natural pregnancy of the recipients, induced by mating with a wild male, significantly enhanced the birth rate of ET offspring than the conventional method (33% vs. 13%). Based on the results, we concluded that our new protocol using hormone injection to ET recipients and mating with wild males could be more efficient and simpler compared to the conventional method.

Emerging role of Hippo pathway in the regulation of hematopoiesis

  • Inyoung Kim;Taeho Park;Ji-Yoon Noh;Wantae Kim
    • BMB Reports
    • /
    • 제56권8호
    • /
    • pp.417-425
    • /
    • 2023
  • In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation.

Modifying Effect of Diallyl Sulfide on Colon Carcinogenesis in C57BL/6J-ApcMin/+ Mice

  • Kang, Jin-Seok;Kim, Tae-Myoung;Shim, Tae-Jin;Salim, Elsayed I.;Han, Beom-Seok;Kim, Dae-Joong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1115-1118
    • /
    • 2012
  • Diallyl sulfide (DAS), a flavoring compound derived from garlic, is considered to have cancer chemopreventive potential in experimental animals and humans. This study was designated to examine possible chemopreventive effects of DAS on colon carcinogenesis using genetically engineered transgenic $Apc^{Min/+}$ mice, a well-established animal model for familial adenomatous polyposis (FAP) and sporadic colorectal cancer. Male C57BL/6J-$Apc^{Min/+}$ mice were divided into three groups. Animals of group 1 were placed on the basal diet (AIN-76A) as non-treated controls. Animals of groups 2 and 3 were given DAS-containing diets (in doses of 100 and 300 ppm, respectively). All mice were sacrificed at the end of week 10 of the experiment. Histopathological investigation revealed that the incidence of colonic polyps was decreased dose-dependently by 19% (13/16) in group 2 and by 32% (13/20) in group 3 compared to the 100% incidence (10/10) in group 1. The multiplicity of colonic polyps per mouse was also slightly decreased by DAS treatment ($1.88{\pm}0.35$ in group 2 and $1.63{\pm}0.36$ in group 3) compared to $2.00{\pm}0.39$ in group 1. On the other hand, there were no significant differences in the numbers of total polyps per mouse in the small intestine between the groups. Taken together, we suggest that DAS may exert promising inhibitory effects on colon carcinogenesis in the transgenic $Apc^{Min/+}$ mice.

Nonspecific Mouse Hepatitis Virus Positivity of Genetically Engineered Mice Determined by ELISA

  • Han, Dae Jong;Kim, Hyuncheol;Yeom, Su-Cheong
    • 대한의생명과학회지
    • /
    • 제21권1호
    • /
    • pp.9-14
    • /
    • 2015
  • Mouse hepatitis virus (MHV) is a major pathogen in laboratory mice that usually leads to fatal diseases, such as hepatitis, multiple sclerosis, encephalitis, and respiratory disease. MHV has a high infection rate, and it needs to be detected as soon as possible to prevent its spread to other facilities. However, MHV detection by enzyme-linked immunosorbent assay (ELISA) often gives false positives; thus, it is very important that the results are confirmed as true positives in the early infection stage or distinguished as false positives with more accurate, reliable methods. Under microbiological screening, MHV ELISA-positive mice were found in four GFP-tagging transgenic mice. To verify the detection of the MHV antigen directly, reverse transcription polymerase chain reaction (RT-PCR) was performed, and the mice were determined to be MHV negative. Additional serum antibody-based screening was conducted with three different ELISA kits, and multiplexed fluorometric immunoassay (MFIA) was performed to confirm their accuracy/sensitivity. In brief, the ELISA kit for A59 nucleocapsid protein (MHV-A59N) revealed MHV ELISA positivity, while other ELISA kits (MHV-S lysate and MHV-JHM lysate) demonstrated MHV negativity. In MFIA, only the test for the recombinant A59 nucleocapsid antigen was MHV positive, which was consistent with the ELISA results. These results suggest that the ELISA kit with the recombinant A59 nucleocapsid antigen might induce non-specific MHV ELISA positivity and that confirmation is therefore essential.

Increased of the Red Blood Cell in Peripheral Plasma of Transgenic Pigs Harboring hEPO Gene

  • Park, J.K.;Jeon, I.S.;Lee, Y.K.;Lee, P.Y.;Kim, S.W.;Kim, S.J.;Lee, H.G.;Han, J.H.;Park, C.G.;Min, K.S.;Lee, C.H.;Lee, H.T.;Chang, W.K.
    • 한국가축번식학회지
    • /
    • 제27권4호
    • /
    • pp.317-324
    • /
    • 2003
  • The present study were performed to analysis the hematocrit and the red blood cells content into the blood plasma of the transgenic pigs harboring recombinent human erythropoietin gene (rhEPO). Mouse whey acidic protein (mWAP) linked to rhEPO gene was microinjected into pronuclei of porcine one-cell zygotes. After delivered of offspring, PCR analyses identified one mWAP-rhEPO transgenic founder offspring(F$_{0}$). The first generation of transgenic pig (F$_{0}$) harboring mWAP-hEPO appeared to be a male, and the second generation (F$_1$) pigs were made by natural mating of F$_{0}$ with domestic swine, and male and female transgenic pigs (F$_1$) were identified by PCR. The blood samples from transgenic and normal pigs were collected for 50 days during lactation and were counted the red blood cell (RBC) numbers and Hematocrit (HCT) content into the blood. The transgenic pigs expressing rhEPO in their blood gave rise to higher RBC numbers and HCT contents than control animals. rhEPO was secreted both in the blood and milk of genetically engineered pigs harboring rhEPO gene. Therefore, this study provides a model regarding the production of transgenic pig carrying hEPO transgene for biomedical research.earch.

Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics

  • Minh Quan Nguyen;Do Hyung Kim;Hye Ji Shim;Huynh Kim Khanh Ta;Thi Luong Vu;Thi Kieu Oanh Nguyen;Jung Chae Lim;Han Choe
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.764-777
    • /
    • 2023
  • Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.

화학적 및 유전공학적으로 제조한 뇌송달 벡터의 뇌수송량 비교 (Comparison of Brain Uptakes for Brain Drug Delivery Vector Synthesized by Chemical and Genetical Engineering Method)

  • 강영숙;서경희
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권2호
    • /
    • pp.87-92
    • /
    • 1999
  • Drug delivery to the brain may be achieved by producing chimeric peptide, attaching the drug to protein 'vectors' which are transported into the brain from the blood by a receptor-mediated transcytosis through the blood-brain barrier (BBB). Since the BBB expresses high concentrations of transferrin receptor, and it was reported that anti-transferrin receptor mouse monoclonal antibody (OX26) undergoes transcytosis through the BBB, it is logical to assume that a drug delivery system via transferrin receptor-mediated transcytosis is a promising strategy. In the present study, therefore, we tested feasibility of several OX26 based vectors for the brain delivery of a model drug. Avidin-based delivery vectors such as OX26-streptavidin (OX26-SA), OX26-neutralite avidin (OX26-NLA) were chemically synthesized vectors and OX26 immunoglobulin G 3 type $C_{H}3$ fusion avidin $(OX26\;IgG3C_H3-AV)$ was genetically engineered. To improve the efficiency of producing chimeric peptide, we used avidin-biotin technology. Pharmacokinetics of $[^3H]biotin$ bound to OX26-SA, OX26-NLA and $OX26\;IgG3C_H3-AV$ was determined by intravenous injection technique, and their stabilities in plasma were analyzed using HPLC. The brain delivery of $[^3H]biotin$ bound to OX26-SA, OX26-NLA and OX26\;$IgG3C_{H}3-AV$ (expressed as %ID/g brain) was $0.22{\pm}0.01$, $0.18{\pm}0.01$ and $0.25{\pm}0.09$, respectively. The areas under the plasma concentration versus time curve (AUC) for OX26-SA, OX26-NLA, $OX26\;IgG3C_H3-AV$ from time zero to 60 min were $209{\pm}10$, $195{\pm}9$, $134{\pm}29\;%ID\;min/ml$ respectively and their total clearances $(CL_{tot})$ were $1.00{\pm}0.09$, $1.08{\pm}0.07$ and $1.54{\pm}0.29\;ml/min/kg$, espectively. These results showed that these vectors possess preferable pharmaceutical (e.g., resonable stability) and pharmacokinetics (e.g., significant brain uptake and enhanced AUC) for brain delivery. Therefore, these vectors may be broadly useful in the brain delivery of drugs that are not transported into the brain to a significant extent.

  • PDF