• Title/Summary/Keyword: Genetic-analysis

Search Result 5,919, Processing Time 0.031 seconds

Analysis of genetic diversity and structure of Mongolian horse using microsatellite markers

  • Jehyun, An;Khaliunaa, Tseveen;Baatartsogt, Oyungerel;Hong Sik, Kong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1226-1236
    • /
    • 2022
  • Mongolian horses are one of the oldest horse breeds, and are very important livestock in Mongolia as they are used in various fields such as transportation, food (milk, meat), and horse racing. In addition, research and preservation on pure Mongolian breeds are being promoted under the implementation of the new Genetics of Livestock Resources' act in Mongolia. However, despite the implementation of this act, genetic research on Mongolian horses using microsatellites (MS) has not progressed enough. Therefore, this study was conducted to analyze the genetic polymorphism of five breeds (Gobi shankh, Tes, Gal shar, Darkhad, and Undurshil) using 14 MS markers recommended by International Society for Animal Genetics (ISAG). The mean number of alleles (MNA) was 8.29, expected heterozygosity frequency (HExp) was 0.767, observed heterozygosity frequency (HObs) was 0.752, and polymorphism information content (PIC) was 0.729. The Nei's genetic distance analysis showed that the genetic distance between Gobi shankh and Darkhad horses was the farthest, and the other three breeds, Tes, Gal shar, and Undurshil were found to be close to each other. Similarly, the principal coordinate analysis (PCoA) and factorial correspondence analysis (FCA) showed that the Gobi shankh and Darkhad horses were genetically distinct from other breeds. On the other hand, it appears that Tes, Gal shar, and Undurshil horses, which are genetically similar, most likely interbred with each other. Therefore, it is expected that these results will help the conservation of genetic resources in Mongolia and the establishment of policies related to Mongolian horses.

Genetic Variations between Hairtail (Trichiurus lepturus) Populations from Korea and China

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.363-367
    • /
    • 2013
  • PCR analysis generated on the genetic data showed that the geographic hairtail (Trichiurus lepturus) population from Korea in the Yellow Sea was more or less separated from geographic hairtail population from China in the South Sea. The average bandsharing value ($mean{\pm}SD$) within hairtail population from Korea showed $0.859{\pm}0.031$, whereas $0.752{\pm}0.039$ within population from China. Also, bandsharing values between two hairtail populations ranged from 0.470 to 0.611, with an average of $0.542{\pm}0.059$. As compared separately, the bandsharing values of individuals within hairtail population from Korea were comparatively higher than those of individuals within population from China. The hierarchical dendrogram resulted from reliable oligonucleotides primers, indicating two genetic clusters composed of cluster 1 (KOREANHAIR1~KOREANHAIR11) and cluster 2 (CHINESEHAI12~CHINESEHAI22). The genetic distances between two geographic populations ranged from 0.038 to 0.476. Individual No. 11 within hairtail population from Korea was genetically closely related with No. 10 (genetic distance=0.038). The longest genetic distance (0.476) displaying significant molecular difference was also between individual No. 01 within hairtail population from Korea and No. 22 from Chinese. In the present study, PCR analysis has revealed significant genetic distances between two hairtail population pairs (P<0.05).

Studies on Genetic Variation of Different Chinese Duck Populations with Random Amplified Polymorphic DNA Analysis

  • Su, Y.;Liu, C.W.;Liu, L.;Ye, C.H.;Cao, W.Q.;Huang, Y.Q.;Zheng, J.;Cai, D.Y.;Olowofeso, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.475-481
    • /
    • 2006
  • The genetic polymorphism and relationships of Muscovy, Cherry Valley Meat ducks, Partridge ducks and their crossbreds $F_1$ and $F_2$, respectively, were studied using a random amplified polymorphic DNA (RAPD) technique. The results showed that RAPD markers were effective for the analysis of genetic relationships among ducks. Amplification with 20-primers gave 760 reproducible amplified fragments. The percentage of polymorphic marker band was 74.70%, which indicates that the RAPD technique had higher efficiency of polymorphism detection and sensitivity in studying the genetic variations among ducks and showed that the genetic polymorphism was abundant between two species of duck populations. The average index of genetic distance in hybrid $F_2$ was 0.2341 and higher than that of its parents, which indicates that the genetic diversity was improved by crossbreeding with Muscovy.

Analysis of Genetic Characteristics of Korean Native Chicken Using DNA Marker (DNA Marker를 이용한 한국 재래닭의 유전특성 분석)

  • 이학교;이성진;황규춘;정일정;박용호;손시환;신영수;오봉국;한재용
    • Korean Journal of Poultry Science
    • /
    • v.23 no.4
    • /
    • pp.177-183
    • /
    • 1996
  • This study was conducted to analyze genetic characteristics of Korean Native Chicken three lines classified on the basis of the feather color and appearance (Red, Yellow, and Black) using DNA fingerprinting method. To estimate the genetic relatedness among breeds and similarities within breeds, we collected blood samples from Korean Native Chicken (KNC), Rhode Island Red (RIR), White Leghorn (WL), and Cornish(CN) and obtained genomic DNA from the blood of 10 individuals randomly selected within the breeds and lines. The genomic DNA samples were digested with restriction enzymes (Hinf J, Hae Ill) and hybridized with various probes (Jeffreys' probes 33.15, 33.6 and M13) after Southern transfer. Genetic similarities within breeds were characterized by band sharing (BS) value, estimated by the DFP band pattern between the pair of lanes. BS values within WL, RIR, and KNC were 0.82, 0.70 and 0.56, respectively. Relative genetic diversity (BS value) of KNC was higher than those two breeds (WL, RIR). Estimation of genetic similarity between KNC lines and control breed (RIR) was 0.32, whereas similarity within KNC lines (6 groups) was 0.50. In this analysis, KNC was showed to have a highly genetic diver-sity at the DNA level, and to be closer in genetic distance to RIR (0.67) than any other breeds.

  • PDF

Effects of habitat differences on the genetic diversity of Persicaria thunbergii

  • Nam, Bo Eun;Nam, Jong Min;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • To understand the effects of habitat characteristics on the genetic diversity of Persicaria thunbergii, three sites of different environmental conditions in a water system were surveyed. Site A was the closest to the source of the water system, and there was a dam between sites A and B. Site C is located on the lowest downstream in the water system. Vegetation survey of four quadrats at each site was performed, and soil samples were collected for physicochemical analysis. Random amplification of polymorphic DNA (RAPD) analysis of ten P. thunbergii individuals at each site was conducted to calculate population genetic diversity and genetic distance among populations. Soil was sterile sand at site A, whereas loamy soil at sites B and C. A pure stand of P. thunbergii appeared at site A, while other species occurred together (such as Humulus japonicus and Phragmites australis) at sites B (Shannon-Wiener index; $H_B=0.309$) and C ($H_C=0.299$). Similar to the species diversity, genetic diversity (Nei's gene diversity; h) within population of site A ($h_A=0.2381$) was relatively lower than sites B ($h_B=0.2761$) and C ($h_C=0.2618$). However, site C was separated from sites A and B in genetic distance rather than the geographical distance (Nei's genetic distance; A~B, 0.0338; B~C, 0.0685; A~C, 0.0833).

Genetic Distances in Two Gracilaria Species (Gracilariaceae, Rhodophyta) Identified by PCR Technique

  • Kim, Young Sik;Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.393-402
    • /
    • 2018
  • Genomic DNA was isolated from the Gracilaria vermiculophylla (GRV) and G. chorda (GRC) from Jangheung located in the southern sea of the Korean Peninsula, respectively and we performed clustering analyses, DNA polymorphisms and the genetic differences. The seven selected primers OPC-01, OPA-04, OPA-05, OPD-07, OPD-08, OPB-10, and OPD-16 generated average bandsharing (BS) value, the genetic distance and dendrogram. The size of DNA bands varies from 90 bp to 2,400 bp. The average BS value was $0.859{\pm}0.004$ within GRV and $0.916{\pm}0.006$ within GRC. The average BS value between two Gracilaria species was $0.340{\pm}0.003$, ranged from 0.250 to 0.415. The dendrogram obtained by the seven primers, indicates two genetic clusters. The genetic distance between two Gracilaria species ranged from 0.059 to 0.513. The individual VERMICULOPHYLLA no. 07 of GRV was genetically closely related to VERMICULOPHYLLA no. 06 of GRV (genetic distance=0.059). Especially, two entities between the individual VERMICULOPHYLLA no. 10 of GRV and CHORDA no. 22 of GRC showed the longest genetic distance (0.513) in comparison with other individuals used. Accordingly, as mentioned above, PCR analysis showed that the GRV was a little more genetically diverse than the GRC species. We convinced that this DNA analysis revealed a significant genetic distance between two Gracilaria species pairs (p<0.01).

On the Teaching of Algebra through Historico -Genetic Analysis (역사-발생적 분석을 통한 대수 지도)

  • Kim, Sung-Joon
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.91-106
    • /
    • 2005
  • History of mathematics must be analysed to discuss mathematical reality and thinking. Analysis of history of mathematics is the method of understanding mathematical activity, by these analysis can we know how historically mathematician' activity progress and mathematical concepts develop. In this respects, we investigate teaching algebra through historico-genetic analysis and propose historico-genetic analysis as alternative method to improve of teaching school algebra. First the necessity of historico-genetic analysis is discussed, and we think of epistemological obstacles through these analysis. Next we focus two concepts i.e. letters(unknowns) and negative numbers which is dealt with school algebra. To apply historico-genetic analysis to school algebra, some historical texts relating to letters and negative numbers is analysed, and mathematics educational discussions is followed with experimental researches.

  • PDF

Detecting Genetic Association and Gene-Gene Interaction using Network Analysis in Case-Control Study

  • Jin, Seo-Hoon;Lee, Min-Hee;Lee, Hyo-Jung;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.563-573
    • /
    • 2012
  • Various methods of analysis have been proposed to understand the gene-disease relation and gene-gene interaction effect for a disease through comparison of genotype in case-control study. In this study, we proposed the method to detect a genetic association and gene-gene interaction through the use of a network graph and centrality measures that are used in social network analysis. The applicability of the proposed method was studied through an analysis of real genetic data.

Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers

  • Suh, Sangwon;Kim, Young-Sin;Cho, Chang-Yeon;Byun, Mi-Jeong;Choi, Seong-Bok;Ko, Yeoung-Gyu;Lee, Chang Woo;Jung, Kyoung-Sub;Bae, Kyoung Hun;Kim, Jae-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1548-1553
    • /
    • 2014
  • Four Korean native cattle (KNC) breeds-Hanwoo, Chikso, Heugu, and Jeju black-are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources.

Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers

  • Kim, Eiseul;Cho, Eun-Ji;Yang, Seung-Min;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.280-289
    • /
    • 2021
  • Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.