• Title/Summary/Keyword: Genetic-Algorithm

Search Result 4,773, Processing Time 0.028 seconds

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

Evaluation and Application of QUAL2E and QUAL2K Models in Anyang Stream (안양천에서 QUAL2E와 QUAL2K 모델의 적용 및 평가)

  • Jung, Sung-Soo;Kim, Kyung-Sub
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.544-551
    • /
    • 2008
  • QUAL2K enhanced QUAL2E and applied in real fields efficiently incorporates denitrification process, sediment-water interaction process, bottom algae and detritus. Also, the CBOD of QUAL2K is divided into two real parts, one is slow CBOD(sCBOD) and another is fast CBOD(fCBOD). The simulation results of QUAL2E and QUAL2K models in Anyang Stream were compared and analyzed in water quality constituents of DO, BOD, Org-N, NH$_3$-N, NO$_3$-N, Org-P, Dis-P and Chl-a respectively. The similar results were shown in Org-N, NH$_3$-N, Org-P and Chl-a both QUAL2K and QUAL2E models. But the different results were revealed in DO, BOD, Dis-P and NO$_3$-N by the influence of new incorporating processes. DO was shown relatively low values in the effect of bottom algae. BOD which is influenced by particulate organic matter was revealed high values. NO$_3$-N was closed to the real values by the two processes of denitrification and sediment-water interaction. To evaluate the running results of QUAL2K and QUAL2E models, a simple statistical analysis was conducted. According to the statistical analysis, QUAL2K represented less relative error and coefficient of variation than QUAL2E in almost all of constituents. It was found that QUAL2K, which simulates the water quality more realistically, can be applied to control and manage the water problems of river or river-run reservoir effectively.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Analysis and Design Theory of Aperture-Coupled Cavity-Fed Back-to-Back Microstrip Directional Coupler (개구면 결합 공진기 급전 마이크로스트립 방향성결합기 해석 및 설계)

  • Nam, Sang-Ho;Jang, Guk-Hyun;Nam, Kyung-Min;Lee, Jang-Hwan;Kim, Chul-Un;Kim, Jeong-Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.7-17
    • /
    • 2007
  • An analysis and design theory of an aperture-coupled cavity-fed back-to-back microstrip directional coupler is presented for the efficient and optimized design. For this purpose, an equivalent network is developed, and simple but accurate calculations of circuit element values are described. Design equations of the coupler are derived based on the equivalent circuit. In order to determine various structural design parameters, the evolutionary hybrid optimization method based on the genetic algorithm and Nelder-Mead method is invoked. As a validation check of the proposed theory and optimized design method, a 10 dB directional coupler was designed and fabricated. The measured coupling was 10.3 dB at 3 GHz, and the return loss and isolation were 31.8 dB and 30.5 dB, respectively. The directional coupler also showed very good quadrature phase characteristics. Good agreements between the measured and the design specifications fully validate the proposed network analysis and design procedure.

A Study on Coupling TOPMODEL with HyGIS (HyGIS와 TOPMODEL의 연계에 관한 연구)

  • Kim, Kyung Tak;Choi, Yun Seok;Jang, Jae Hyeok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.155-165
    • /
    • 2004
  • Hydrological model which is proper to watershed characteristics and analysis purpose must be used when we analyze water resources. But, although proper model is used, if objectivity and reasonability of data is low it is difficult to get good results from the model. So it is very important to decide the data which is used in selected model and estimate parameters by using the applied data. In this study, temporal and spatial data was constructed as standard data of test site and stored in HyGIS (Hydrological Geographic Information System) DB. A system which extracts temporal and spatial data required to run hydrological model from HyGIS DB by connecting TOPMODEL with HyGIS was developed. In this system, we can extract temporal and spatial data which is needed to run TOPMODEL from HyGIS DB and estimate model parameters by using genetic algorithm. We found that HyGIS and the system connected with TOPMODEL was effective to make temporal and spatial data used in TOPMODEL and estimate model parameters. From this study, we suggested the possibility that HyGIS could be applied properly to another hydrological model, too.

  • PDF

Optimizing Similarity Threshold and Coverage of CBR (사례기반추론의 유사 임계치 및 커버리지 최적화)

  • Ahn, Hyunchul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.535-542
    • /
    • 2013
  • Since case-based reasoning(CBR) has many advantages, it has been used for supporting decision making in various areas including medical checkup, production planning, customer classification, and so on. However, there are several factors to be set by heuristics when designing effective CBR systems. Among these factors, this study addresses the issue of selecting appropriate neighbors in case retrieval step. As the criterion for selecting appropriate neighbors, conventional studies have used the preset number of neighbors to combine(i.e. k of k-nearest neighbor), or the relative portion of the maximum similarity. However, this study proposes to use the absolute similarity threshold varying from 0 to 1, as the criterion for selecting appropriate neighbors to combine. In this case, too small similarity threshold value may make the model rarely produce the solution. To avoid this, we propose to adopt the coverage, which implies the ratio of the cases in which solutions are produced over the total number of the training cases, and to set it as the constraint when optimizing the similarity threshold. To validate the usefulness of the proposed model, we applied it to a real-world target marketing case of an online shopping mall in Korea. As a result, we found that the proposed model might significantly improve the performance of CBR.

Optimization for Inspecdtion Planning of Ship Structures Considering Corrosion Effects (부식효과를 고려한 선체구조 검사계획안의 최적화)

  • Sung-Chan Kim;Jang-Ho Yoon;Yukio Fujimoto
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.137-146
    • /
    • 1999
  • Inspection becomes to be important in the safety of structure and economical viewpoint, because structural damage accompanies lots of economical cost and social problems. Especially ship structure is composed of a lot of members and it is impossible to inspect all members continuously. The purpose of this paper is to get optimal inspection plan containing inspection time and method. Crack is one of major modes on the structural failure and can lead to collapse of structure. In this paper, the deteriorating process, which contains inspection to detect the crack before the propagation to large crack, is idealized as Markov chain model. Genetic algorithm is also used to accomplish the optimization of inspection plan. Especially, the probabilistic characteristics of cracks are changed, because ship is operating in corrosive environments and the scantling of structural members is reduced due to corrosion. Non-stationary Markov chain model is used to represent the process of corrosion in structural members. In this paper, the characteristics of indivisual inspection plan are compared by numerical examples for the change of corrosion rate, the cost due to scheduled system down and target failure probability. From the numerical example, it can be seen that the improvement of fatigue life for the members with short fatigue life is the most effective way in order to reduce total maintenance cost.

  • PDF

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranpiration Time Series. 2. Optimal Model Construction by Uncertainty Analysis (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 2. 불확실성 분석에 의한 최적모형의 구축)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.89-99
    • /
    • 2007
  • Uncertainty analysis is used to eliminate the climatic variables of input nodes and construct the model of an optimal type from COMBINE-GRNNM-GA(Type-1), which have been developed in this issue(2007). The input variable which has the lowest smoothing factor during the training performance, is eliminated from the original COMBINE-GRNNM-GA (Type-1). And, the modified COMBINE-GRNNM-GA(Type-1) is retrained to find the new and lowest smoothing factor of the each climatic variable. The input variable which has the lowest smoothing factor, implies the least useful climatic variable for the model output. Furthermore, The sensitive and insensitive climatic variables are chosen from the uncertainty analysis of the input nodes. The optimal COMBINE-GRNNM-GA(Type-1) is developed to estimate and calculate the PE which is missed or ungaged and the $ET_r$ which is not measured with the least cost and endeavor Finally, the PE and $ET_r$. maps can be constructed to give the reference data for drought and irrigation and drainage networks system analysis using the optimal COMBINE-GRNNM-GA(Type-1) in South Korea.