• 제목/요약/키워드: Genetic screening

검색결과 497건 처리시간 0.022초

High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides

  • Ahn, Il-Pyung;Kim, Soon-Ok;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제24권1호
    • /
    • pp.24-30
    • /
    • 2008
  • Colletotrichum gloeosporioides forms an appressorium, a specialized infection structure, to infect its hosts. Among 400 and 600 culture filtrates from fungi and class Actinomycetes, six methanol extracts (A5005, A5314, A5387, A5560, A5597, and A5598) from the class Actinomycetes significantly inhibited appressorium formation in C. gloeosporioides infecting pepper fruits in a dose-dependent manner, while conidial germination was slightly enhanced. Two (A5005 and A5560) of them also exhibited distinctive inhibitory effect on the disease progress of pepper anthracnose. Water fractions of both culture filtrates also specifically inhibited appressorium formation in C. gloeosporioides and pepper anthracnose disease. Inhibition of appressorium formation by culture filtrate of A5005 was partially restored by the exogenous calcium. This results suggests that chemicals within A5005 extents its biological activity through disturbance of intracellular $Ca^{2+}$ regulation during prepenetration morphogenesis by C. gloeosporioides. Together, cell-based and target-oriented screening system used in this study should be applicable for other plant pathogenic fungi prerequisite appressorium formation to infect their hosts.

유아돌연사증후군과 유전성대사질환 (Sudden Infant Death Syndrome and Inborn Metabolic Disorders)

  • 윤혜란
    • 대한유전성대사질환학회지
    • /
    • 제13권2호
    • /
    • pp.75-80
    • /
    • 2013
  • Specific genetic conditions may lead to sudden unexpected deaths in infancy, such as inborn errors of fatty acid oxidation and genetic disorders of cardiac ion channels. The disease may present dramatically with severe hypoketotic hypoglycemia, Reye syndrome or sudden death, typically with a peak of frequency around 3-6 month, whilst neonatal sudden death is quite rare. When undetected, approximately 20-25% of infants will die or suffer permanent neurologic impairment as a consequence of the first acute metabolic decompensation. Meanwhile, the advent of newborn screening for metabolic diseases has revealed populations of patients with disorders of fatty acid oxidation (FAO), the most frequent of which is medium chain acyl-CoA dehydrogenase (MCAD) deficiency. Without this screening, affected individuals would likely succumb to sudden infant death syndrome (SIDS). Here we describe an overview of sudden infant death syndrome and inherited metabolic disorder.

  • PDF

국내 종양유전상담 간호사를 위한 단기 교육프로그램 개발 (The First Korean Cancer Genetic Counseling Program for Nurses)

  • 최경숙;구웬앤더슨;전명희
    • 한국간호교육학회지
    • /
    • 제12권1호
    • /
    • pp.104-114
    • /
    • 2006
  • Genetic knowledge for oncology nurses is important in Korea because oncologists are incorporating genetic counseling and genetic testing into their practice. The purpose of this paper is to describe our method of developing the first academic cancer genetic risk assessment and counseling course for Korean nurses. A one-week (non-credit) cancer genetics counseling program was constructed for master's level Korean oncology nurses. The course emphasized basic genetic concepts and principles the genetics of cancer; hereditary cancer syndromes; family history assessments; pedigree construction; risk calculation; surveillance recommendations and treatment options ethical, legal, social, and psychological issues inherent in genetic testing. The goals of this program are to: 1) provide a comprehensive knowledge base for nurses who are currently expanding their scope of practice into the genetic counseling role 2) introduce this knowledge to nurses who want to use it in their practice; and 3) provide cancer genetic knowledge and resources to Korean nursing faculty who plan to incorporate this knowledge into existing master's courses. This academically-based course is recognized as valuable by nurses, nursing faculty, and physicians. With this new knowledge nurses can begin toexpand their role in delivering comprehensive cancer care services.

  • PDF

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • 대한의생명과학회지
    • /
    • 제19권1호
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

식물성장 조절물질을 분비하는 미생물의 탐색 (Screening of Microorganisms Secreting Plant Growth Regulators)

  • 조봉희;김근;성낙문
    • 한국균학회지
    • /
    • 제21권2호
    • /
    • pp.112-119
    • /
    • 1993
  • 식물 성장조절물질을 분비하는 미생물들을 100여주의 세균, 방선균, 균류의 분리균들로부터 탐색하였고, 그 중 뚜렷한 효과를 나타내는 균주들을 동정한 결과 Aspergillus niger로 판명되었다. 무와 오이씨의 발아는 A. niger KK, A. niger KKS와 A. niger ATCC 9642의 배양 여과액에 의하여 완전히 저해되었다. 또한 이들 세 균주들은 무우 뿌리와 하배축의 발달도 억제하였다. A. niger ATCC 26550은 하배축의 굴절을 유도하여 식물 호르몬인 오옥신과 유사한 작용을 나타내면서도, 전체 식물로는 잎의 마름도 초래하였다.

  • PDF

Korean physicians' attitudes toward the prenatal screening for fetal aneuploidy and implementation of non-invasive prenatal testing with cell-free fetal DNA

  • Kim, Soo Hyun;Kim, Kun Woo;Han, You Jung;Lee, Seung Mi;Lee, Mi-Young;Shim, Jae-Yoon;Cho, Geum Joon;Lee, Joon Ho;Oh, Soo-young;Kwon, Han-Sung;Cha, Dong Hyun;Ryu, Hyun Mee
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.72-78
    • /
    • 2018
  • Purpose: Physicians' attitudes may have a strong influence on women's decision regarding prenatal screening options. The aim of this study is to assess the physicians' attitudes toward prenatal screening for fetal aneuploidy including non-invasive prenatal testing (NIPT) in South Korea. Materials and Methods: Questionnaires were distributed and collected at several obstetrics-gynecological conferences and meetings. The questionnaire included 31 multiple choice and 5 fill-in-the-blank questions. Seven questions requested physicians' demographic information, 17 questions requested information about the NIPT with cell-free fetal DNA, and 12 questions requested information about general prenatal screening practices. Results: Of the 203 obstetricians that completed the survey. In contrast with professional guidelines recommending the universal offering of aneuploidy screening, only 53.7% answered that prenatal aneuploidy testing (screening and/or invasive diagnostic testing) should be offered to all pregnant women. Physicians tended to have positive attitudes toward the clinical application of NIPT as both primary and secondary screening methods for patients at high-risk for fetal trisomy. However, for patients at average-risk for fetal trisomy, physicians tended to have positive attitudes only as a secondary screening method. Physicians with more knowledge about NIPT were found to tend to inform their patients that the detection rate of NIPT is higher. Conclusion: This is the first study to investigate expert opinion on prenatal screening in South Korea. Education of physicians is essential to ensure responsible patient counseling, informed consent, and appropriate management after NIPT.

The genetic structure of taro: a comparison of RAPD and isozyme markers

  • Sharma, Kamal;Mishra, Ajay Kumar;Misra, Raj Shekhar
    • Plant Biotechnology Reports
    • /
    • 제2권3호
    • /
    • pp.191-198
    • /
    • 2008
  • Germplasm characterization and evolutionary process in viable populations are important links between the conservation and utilization of plant genetic resources. Here, an investigation is made, based on molecular and biochemical techniques for assessing and exploiting the genetic variability in germplasm characterization of taro, which would be useful in plant breeding and ex situ conservation of taro plant genetic resources. Geographical differentiation and phylogenetic relationships of Indian taro, Colocasia esculenta (L.) Schott, were analyzed by random amplified polymorphic DNA (RAPD) and isozyme of seven enzyme systems with specific reference to the Muktakeshi accession, which has been to be proved resistant to taro leaf blight caused by P. colocasiae. The significant differentiations in Indian taro cultivars were clearly demonstrated by RAPD and isozyme analysis. RAPD markers showed higher values for genetic differentiation among taro cultivars and lower coefficient of variation than those obtained from isozymes. Genetic differentiation was evident in the taro accessions collected from different regions of India. It appears that when taro cultivation was introduced to a new area, only a small fraction of genetic variability in heterogeneous taro populations was transferred, possibly causing random differentiation among locally adapted taro populations. The selected primers will be useful for future genetic analysis and provide taro breeders with a genetic basis for selection of parents for crop improvement. Polymorphic markers identified in the DNA fingerprinting study will be useful for screening a segregating population, which is being generated in our laboratory aimed at developing a taro genetic linkage map.

Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology

  • Lee, Seung Ryeol;Lee, Tae Ho;Song, Seung-Hun;Kim, Dong Suk;Choi, Kyung Hwa;Lee, Jae Ho;Kim, Dae Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.283-294
    • /
    • 2021
  • A genetic etiology of male infertility is identified in fewer than 25% of infertile men, while 30% of infertile men lack a clear etiology, resulting in a diagnosis of idiopathic male infertility. Advances in reproductive genetics have provided insights into the mechanisms of male infertility, and a characterization of the genetic basis of male infertility may have broad implications for understanding the causes of infertility and determining the prognosis, optimal treatment, and management of couples. In a substantial proportion of patients with azoospermia, known genetic factors contribute to male infertility. Additionally, the number of identified genetic anomalies in other etiologies of male infertility is growing through advances in whole-genome amplification and next-generation sequencing. In this review, we present an up-to-date overview of the indications for appropriate genetic tests, summarize the characteristics of chromosomal and genetic diseases, and discuss the treatment of couples with genetic infertility by microdissection-testicular sperm extraction, personalized hormone therapy, and in vitro fertilization with pre-implantation genetic testing.

Effects of paternal age on human embryo development in in vitro fertilization with preimplantation genetic screening

  • Kim, Min Kyoung;Park, Jae Kyun;Jeon, Yunmi;Seok, Su Hee;Chang, Eun Mi;Lee, Woo Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권1호
    • /
    • pp.22-29
    • /
    • 2019
  • Objective: As paternal age increases, the quality of sperm decreases due to increased DNA fragmentation and aneuploidy. Higher levels of structural chromosomal aberrations in the gametes ultimately decrease both the morphologic quality of embryos and the pregnancy rate. In this study, we investigated whether paternal age affected the euploidy rate. Methods: This study was performed using the medical records of patients who underwent in vitro fertilization (IVF) procedures with preimplantation genetic screening (PGS) from January 2016 to August 2017 at a single center. Based on their morphological grade, embryos were categorized as good- or poor-quality blastocysts. The effects of paternal age were elucidated by adjusting for maternal age. Results: Among the 571 total blastocysts, 219 euploid blastocysts were analyzed by PGS (38.4%). When the study population was divided into four groups according to both maternal and paternal age, significant differences were only noted between groups that differed by maternal age (group 1 vs. 3, p= 0.031; group 2 vs. 4, p= 0.027). Further analysis revealed no significant differences in the euploidy rate among the groups according to the morphological grade of the embryos. Conclusion: Paternal age did not have a significant impact on euploidy rates when PGS was performed. An additional study with a larger sample size is needed to clarify the effects of advanced paternal age on IVF outcomes.

Modeling of Human Genetic Diseases Via Cellular, Reprogramming

  • Kang, Min-Yong;Suh, Ji-Hoon;Han, Yong-Mahn
    • Journal of Genetic Medicine
    • /
    • 제9권2호
    • /
    • pp.67-72
    • /
    • 2012
  • The generation of induced pluripotent stem cells (iPSCs) derived from patients' somatic cells provides a new paradigm for studying human genetic diseases. Human iPSCs which have similar properties of human embryonic stem cells (hESCs) provide a powerful platform to recapitulate the disease-specific cell types by using various differentiation techniques. This promising technology has being realized the possibility to explore pathophysiology of many human genetic diseases at the molecular and cellular levels. Furthermore, disease-specific human iPSCs can also be used for patient-based drug screening and new drug discovery at the stage of the pre-clinical test in vitro. In this review, we summarized the concept and history of cellular reprogramming or iPSC generation and highlight recent progresses for disease modeling using patient-specific iPSCs.