• Title/Summary/Keyword: Genetic parameters and carcass traits

Search Result 52, Processing Time 0.028 seconds

Estimation of Genetic Correlations and Selection Responses for Carcass Traits between Ultrasound and Real Carcass Measurements in Hanwoo Cows

  • Son, Jihyun;Lee, Deukhwan
    • Journal of Animal Science and Technology
    • /
    • v.55 no.6
    • /
    • pp.501-508
    • /
    • 2013
  • This study was conducted to determine genetic correlations among carcass traits measured by ultrasound and real carcass measurements and to estimate indirect selection responses for real carcass traits based on ultrasound measurements in Hanwoo cows. To accomplish this, 22,080 ultrasound measurement records from 17,926 cows collected from 2001 to 2012 and 11,907 carcass records obtained from fattened cattle from 2008 to 2012 were used. Genetic parameters were estimated based on eye muscle area (EMA), backfat thickness (BF) and marbling score (MS) measured by ultrasound-scanning of live cows and using the official technique on chilled bovine half-carcasses after slaughtering. Heritability and genetic correlation for carcass traits were estimated using a mixed model equation that consisted of environmental effects as fixed parameters and additive genetic effects and residual effects as random parameters, assuming that traits were different between ultrasound and carcass measurements. This statistical method was applied to the average information restricted maximum likelihood method. The heritability of EMA, BF and MS measured by ultrasound were 0.33, 0.61 and 0.46, respectively, while the heritability estimates of the corresponding traits based on carcass measurements were 0.29, 0.40 and 0.38, respectively and the genetic correlation between ultrasound and carcass traits for EMA, BF and MS were 0.41, 0.78 and 0.67, respectively. The genetic correlation between ultrasound and carcass traits was highly positive. Additionally, the selection response for marbling score was estimated to be 0.42 per generation if the cows were selected based on the ultrasound scan marbling score with an assumed selection intensity of 0.8. Overall, these results indicate that the ultrasound scan technique would be applicable to judging cow selection for genetically improved meat quality.

Genetic parameters and correlations of related feed efficiency, growth, and carcass traits in Hanwoo beef cattle

  • Mehrban, Hossein;Naserkheil, Masoumeh;Lee, Deuk Hwan;Ibanez-Escriche, Noelia
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.824-832
    • /
    • 2021
  • Objective: This study aimed to estimate the genetic parameters and genetic correlations for related feed efficiency, growth, and carcass traits in Hanwoo cattle. Methods: Phenotypic data from 15,279 animals born between 1989 and 2015 were considered. The related feed efficiency traits considered were Kleiber ratio (KR) and relative growth rate (RGR). Carcass traits analyzed were backfat thickness (BT), carcass weight, eye muscle area, and marbling score. Growth traits were assessed by the average daily gain (ADG), metabolic body weight (MBW) at mid-test age from 6 to 24 months, and yearling weight (YW). Variance and covariance components were estimated using restricted maximum likelihood using nine multi-trait animal models. Results: The heritability estimates for related feed efficiency (0.28±0.04 for KR and RGR) and growth traits (0.26±0.02 to 0.33±0.04) were moderate, but the carcass traits tended to be higher (0.38±0.04 to 0.61±0.06). The related feed efficiency traits were positively genetically correlated with all the carcass traits (0.37±0.09 to 0.47±0.07 for KR, and 0.14±0.09 to 0.37±0.09 for RGR), except for BT, which showed null to weak correlation. Conversely, the genetic correlations of RGR with MBW (-0.36±0.08) and YW (-0.30±0.08) were negative, and those of KR with MBW and YW were close to zero, whereas the genetic correlations of ADG with RGR (0.40±0.08) and KR (0.70±0.05) were positive and relatively moderate to high. The genetic (0.92±0.02) correlations between KR and RGR were very high. Conclusion: Sufficient genetic variability and heritability were observed for traits of interest. Moreover, the inclusion of KR and/or RGR in Hanwoo cattle breeding programs could improve the feed efficiency without producing any unfavorable effects on the carcass traits.

Estimation of the genetic parameters of 24- and 30-month carcass traits for sire selection

  • Kim, Dae Jung;Song, Hyung Jun;Lee, Seok Hyun;Lee, Jung Jae;Jin, Shil;Cho, Sang Rae;Kang, Sung Sik;Won, Jeong Il
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.527-534
    • /
    • 2021
  • This study investigated the possibility of performing selection using 30-month carcass traits by estimating the genetic parameters of 24- and 30-month carcass traits. Data used in this study were the carcass traits of 13,151 heads slaughter at the age of 24 and 30 months. As a result of the study, the heritability of backfat thickness, carcass weight, eye muscle area and marbling score at 24 months of age were estimated to be 0.588, 0.354, 0.467 and 0.587, respectively. The heritability of backfat thickness, carcass weight, eye muscle area and marbling score at 30 months of age were estimated to be 0.498, 0.577, 0.505 and 0.530, respectively. The ranking correlation was 0.516 between the carcass selection indices of 24 and 30 months of age. By providing a 30-month selection index, it is possible to use semen suitable for farm profits, and more semen information can be provided to farms than previously. Furthermore, studies on a selection index based on 30-month carcass traits are needed to provide highly accurate information.

Estimation of genetic parameters for pork belly traits

  • Seung-Hoon Lee;Sang-Hoon Lee;Hee-Bok Park;Jun-Mo Kim
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1156-1166
    • /
    • 2023
  • Objective: Pork belly is a cut of meat with high worldwide demand. However, although the belly is comprised of multiple muscles and fat, unlike the loin muscle, research on their genetic parameters has yet to focus on a representative cut. To use swine breeding, it is necessary to estimate heritability against pork belly traits. Moreover, estimating genetic correlations is needed to identify genetic relationship among the traditional carcass and meat quality traits. This study sought to estimate the heritability of the carcass, belly, and their component traits, as well as the genetic correlations among them, to confirm whether these traits can be improved. Methods: A total of 543 Yorkshire pigs (406 castrated males and 137 females) from 49 sires and 244 dam were used in this study. To estimate genetic parameters, a total of 12 traits such as lean meat production ability, meat quality and pork belly traits were chosen. The heritabilities were estimated by using genome-wide efficient mixed model association software. The statistical model was selected so that farm, carcass weight, sex, and slaughter season were fixed effects. In addition, its genetic parameters were calculated via MTG2 software. Results: The heritability estimates for the 7th belly slice along the whole plate and its components were low to moderate (0.07±0.07 to 0.33±0.07). Moreover, the genetic correlations among the carcass and belly traits were moderate to high (0.28±0.20 to 0.99±0.31). Particularly, the rectus abdominis muscle exhibited a high absolute genetic correlation with the belly and meat quality (0.73±52 to 0.93±0.43). Conclusion: A moderate to high correlation coefficient was obtained based on the genetic parameters. The belly could be genetically improved to contain a larger proportion of muscle regardless of lean meat production ability.

Genetic Relationships of Carcass Traits with Retail Cut Productivity of Hanwoo Cattle

  • Koh, Daeyoung;Lee, Jeongkoo;Won, Seunggun;Lee, Chaeyoung;Kim, Jongbok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1387-1393
    • /
    • 2014
  • This study aimed to estimate genetic correlation between carcass grading and retail productivity traits and to estimate the correlated response on retail productivity traits through selection for carcass grading traits in order to assess the efficacy of indirect selection. Genetic parameters were estimated with the data from 4240 Hanwoo steers using mixed models, and phenotypes included carcass weight (CWT), back fat thickness (BFT), eye muscle area (EMA), marbling (MAR), and estimated lean yield percentage (ELP) as the carcass grading traits, and weight and portion of retail cuts (RCW and RCP), trimmed fats (TFW and TFP) and trimmed bones (TBW and TBP) as the lean productivity traits. The CWT had positive genetic correlations with RCW (0.95) and TFW (0.73), but its genetic correlation with RCP was negligible (0.02). The BFT was negatively correlated with RCP (-0.63), but positively correlated with TFW and TFP (0.77 and 0.70). Genetic correlations of MAR with TFW and TFP were low. Among the carcass grading traits, only EMA was positively correlated with both RCW (0.60) and RCP (0.72). The EMA had a relatively strong negative genetic correlation with TFW (-0.64). The genetic correlation coefficients of ELP with RCP, TFW, and TFP were 0.76, -0.90, and -0.82, respectively. These correlation coefficients suggested that the ELP and EMA might be favorable traits in regulating lean productivity of carcass.

Estimation of environmental effects and genetic parameters of carcass traits on Chikso (Korean brindle cattle)

  • Park, Byoungho;Choi, Tae Jeong;Park, Mi Na;Oh, Sang-Hyon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.525-530
    • /
    • 2020
  • Objective: The purpose of this study was i) to identify the characteristics of carcass traits in Chikso by gender, region, age at slaughter, and coat color using the carcass data collected from the nationwide pedigree information and coat color investigation, and ii) to estimate genetic parameters for breed improvement. Methods: A linear model was used to analyze the environmental effects on the carcass traits and to estimate genetic parameters. Analysis of variance was performed using TYPE III sum of squares for the unbalanced data provided by the general linear model procedure. Variance components for genetic parameters was estimated using REMLF90 of the BLUPF90 family programs. Results: Phenotypic performance of carcass weight (CW), eye muscle area (EMA), and backfat thickness (BF) in Chikso were lower than those of Hanwoo. This is a natural outcome because Hanwoo have undergone significant efforts for improvement at the national level, a phenomenon not observed in Chikso. Another factor influencing the above outcome was the smaller population size of Chikso compared to that of Hanwoo's. The heritabilities of CW, EMA, BF, and marbling score in Chikso were estimated as 0.50, 0.37, 0.35, and 0.53, respectively, which were was higher than those of Hanwoo. Conclusion: Based on the genetic parameters that were estimated in this study, it is expected that the carcass traits will improve when the livestock research institutes at each province conduct small-scale performance tests and the semen is provided to farmers after selecting proven bulls using the state-of-art selection technique such as genomic selection.

Genetic Parameters of Reproductive and Meat Quality Traits in Korean Berkshire Pigs

  • Lee, Joon-Ho;Song, Ki-Duk;Lee, Hak-Kyo;Cho, Kwang-Hyun;Park, Hwa-Chun;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1388-1393
    • /
    • 2015
  • Genetic parameters of Berkshire pigs for reproduction, carcass and meat quality traits were estimated using the records from a breeding farm in Korea. For reproduction traits, 2,457 records of the total number of piglets born (TNB) and the number of piglets born alive (NBA) from 781 sows and 53 sires were used. For two carcass traits which are carcass weight (CW) and backfat thickness (BF) and for 10 meat quality traits which are pH value after 45 minutes (pH45m), pH value after 24 hours (pH24h), lightness in meat color (LMC), redness in meat color (RMC), yellowness in meat color (YMC), moisture holding capacity (MHC), drip loss (DL), cooking loss (CL), fat content (FC), and shear force value (SH), 1,942 pig records were used to estimate genetic parameters. The genetic parameters for each trait were estimated using VCE program with animal model. Heritability estimates for reproduction traits TNB and NBA were 0.07 and 0.06, respectively, for carcass traits CW and BF were 0.37 and 0.57, respectively and for meat traits pH45m, pH24h, LMC, RMC, YMC, MHC, DL, CL, FC, and SH were 0.48, 0.15, 0.19, 0.36, 0.28, 0.21, 0.33, 0.45, 0.43, and 0.39, respectively. The estimate for genetic correlation coefficient between CW and BF was 0.27. The Genetic correlation between pH24h and meat color traits were in the range of -0.51 to -0.33 and between pH24h and DL and SH were -0.41 and -0.32, respectively. The estimates for genetic correlation coefficients between reproductive and meat quality traits were very low or zero. However, the estimates for genetic correlation coefficients between reproductive traits and drip and cooking loss were in the range of 0.12 to 0.17 and -0.14 to -0.12, respectively. As the estimated heritability of meat quality traits showed medium to high heritability, these traits may be applicable for the genetic improvement by continuous measurement. However, since some of the meat quality traits showed negative genetic correlations with carcass traits, an appropriate breeding scheme is required that carefully considers the complexity of genetic parameters and applicability of data.

Genetic Relationship between Carcass Traits and Carcass Price of Korean Cattle

  • Kim, Jong-Bok;Kim, Dae-Jung;Lee, Jeong-Koo;Lee, Chae-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.848-854
    • /
    • 2010
  • The objectives of this study were to estimate genetic parameters for the carcass price and carcass traits contributing to carcass grading and to investigate the influence of each carcass trait on the carcass price using multiple regression and path analyses. Data for carcass traits and carcass prices were collected from March 2003 to January 2009 on steers of Korean cattle raised at private farms. The analytical mixed animal model, including slaughter house-year-month combination, linear and quadratic slaughter age as fixed effects and random animal and residual effects, was used to estimate genetic parameters. The effects of carcass traits on the carcass price were evaluated by applying multiple regression analyses. Heritability estimates of carcass traits were $0.20{\pm}0.08$ for carcass weight (CWT), $0.33{\pm}0.10$ for back fat thickness (BFT), $0.07{\pm}0.05$ for eye-muscle area (EMA) and $0.25{\pm}0.10$ for marbling score (MS), and those of carcass prices were $0.21{\pm}0.10$ for auction price per 1 kg of carcass weight (AP) and $0.13{\pm}0.07$ for total price (CP). Genetic correlation coefficients of AP with CWT and MS were $-0.35{\pm}0.29$ and $0.99{\pm}0.04$, respectively, and those of CP with CWT and MS were $0.59{\pm}0.22$ and $0.39{\pm}0.29$ respectively. If an appropriate adjustment for temporal economic value is available, the moderate heritability estimates of AP and CP might suggest their potential use as the breeding objectives for improving the gross incomes of beef cattle farms. The large genetic correlation estimates of carcass price variables with CWT and MS implied that simultaneous selection for both CWT and MS would be also useful in enhancing income.

Parameter estimation and assessment of bias in genetic evaluation of carcass traits in Hanwoo cattle using real and simulated data

  • Mohammed Bedhane;Julius van der Werf;Sara de las Heras-Saldana;Leland Ackerson IV;Dajeong Lim;Byoungho Park;Mi Na Park;Seunghee Roh;Samuel Clark
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1180-1193
    • /
    • 2023
  • Most carcass and meat quality traits are moderate to highly heritable, indicating that they can be improved through selection. Genetic evaluation for these types of traits is performed using performance data obtained from commercial and progeny testing evaluation. The performance data from commercial farms are available in large volume, however, some drawbacks have been observed. The drawback of the commercial data is mainly due to sorting of animals based on live weight prior to slaughter, and this could lead to bias in the genetic evaluation of later measured traits such as carcass traits. The current study has two components to address the drawback of the commercial data. The first component of the study aimed to estimate genetic parameters for carcass and meat quality traits in Korean Hanwoo cattle using a large sample size of industry-based carcass performance records (n = 469,002). The second component of the study aimed to describe the impact of sorting animals into different contemporary groups based on an early measured trait and then examine the effect on the genetic evaluation of subsequently measured traits. To demonstrate our objectives, we used real performance data to estimate genetic parameters and simulated data was used to assess the bias in genetic evaluation. The results of our first study showed that commercial data obtained from slaughterhouses is a potential source of carcass performance data and useful for genetic evaluation of carcass traits to improve beef cattle performance. However, we observed some harvesting effect which leads to bias in genetic evaluation of carcass traits. This is mainly due to the selection of animal based on their body weight before arrival to slaughterhouse. Overall, the non-random allocation of animals into a contemporary group leads to a biased estimated breeding value in genetic evaluation, the severity of which increases when the evaluation traits are highly correlated.

Estimation of Genetic and Environmental Parameters of Carcass Traits in Hanwoo (Korean Native Cattle) Populations

  • Baik, D.H.;Hoque, M.A.;Choe, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1523-1526
    • /
    • 2002
  • Genetic parameters of carcass weight (CWT), dressing percent (DP), cook loss (CL), eye muscle area (EMA), back fat thickness (BFT), and meat tenderness in terms of mastication (MAS), shear force (SFR) and penetration (PEN) in Korean native cattle were estimated in this study. Effects of sire, location and their interaction on these traits were also evaluated. Sire effects were found to be significant on all the traits studied except for PEN. The CWT and DP were also significantly affected both by location (p<0.01) and by interaction effect between sire${\times}$location (p<0.05). The EMA was significantly (p<0.05) affected by location but not by interaction effect between sire${\times}$location. All the traits were positively correlated ($r_g$ and $r_p$) with each other except between CL and meat tenderness (negatively correlated). Moderate to high genetic correlations between CWT and other important traits were obtained; indicating that selection for CWT would lead to improve carcass quality. Heritability estimates were 0.64, 0.52, 0.37, 0.25, 0.19 and 0.18 for MAS, SFR, CWT, PEN, DP and EMA, respectively.