Genetic parameters and correlations of related feed efficiency, growth, and carcass traits in Hanwoo beef cattle |
Mehrban, Hossein
(Animal Science, Shahrekord University)
Naserkheil, Masoumeh (Animal Science, University of Tehran) Lee, Deuk Hwan (Animal Life and Environment Sciences, Hankyong National University) Ibanez-Escriche, Noelia (Institute for Animal Science and Technology, Universitat Politecnica de Valencia) |
1 | Hoque MA, Hosono M, Oikawa T, Suzuki K. Genetic parameters for measures of energetic efficiency of bulls and their relationships with carcass traits of field progeny in Japanese Black cattle. J Anim Sci 2009;87:99-106. https://doi.org/10.2527/jas.2007-0766 DOI |
2 | Berry DP, Crowley JJ. Cell biology symposium: genetics of feed efficiency in dairy and beef cattle. J Anim Sci 2013;91: 1594-613. https://doi.org/10.2527/jas.2012-5862 DOI |
3 | Grion AL, Mercadante MEZ, Cyrillo JNSG, Bonilha SFM, Magnani E, Branco RH. Selection for feed efficiency traits and correlated genetic responses in feed intake and weight gain of Nellore cattle. J Anim Sci 2014;92:955-65. https://doi.org/10.2527/jas.2013-6682 DOI |
4 | Kelly AK, McGee M, Crews DH, Sweeney T, Boland TM, Kenny DA. Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake. J Anim Sci 2010;88:3214-25. https://doi.org/10.2527/jas.2009-2700 DOI |
5 | Kleiber M. Body size and metabolic rate. Physiol Rev 1947; 27:511-41. https://doi.org/10.1152/physrev.1947.27.4.511 DOI |
6 | Koch RM, Swiger LA, Chambers D, Gregory KE. Efficiency of feed use in beef cattle. J Anim Sci 1963;22:486-94. https://doi.org/10.2527/jas1963.222486x DOI |
7 | Brody S. Bioenergetics and growth with special reference to the efficiency complex in domestic animals. New York, NY, USA: Reinhold Publishers; 1945. |
8 | Fitzhugh HA, Taylor SC. Genetic analysis of degree of maturity. J Anim Sci 1971;33:717-25. https://doi.org/10.2527/jas1971.334717x DOI |
9 | Bergh L, Scholtz MM, Erasmus GJ. Identification and assessment of the best animals: the Kleiber ratio (growth rate/metabolic mass) as a selection criterion for beef cattle. In: Proceedings of the Australian Association of Animal Breeding and Genetics; 1992. pp. 338-40. |
10 | Arthur PF, Renand G, Krauss D. Genetic and phenotypic relationships among different measures of growth and feed efficiency in young Charolais bulls. Livest Prod Sci 2001;68: 131-9. https://doi.org/10.1016/S0301-6226(00)00243-8 DOI |
11 | Mrode RA. Linear models for the prediction of animal breeding values. 3rd ed. Wallingford, UK: CABI; 2014. |
12 | Crowley JJ, McGee M, Kenny DA, Crews DH, Evans RD, Berry DP. Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. J Anim Sci 2010;88:885-94. https://doi.org/10.2527/jas.2009-1852 DOI |
13 | Kim JB, Kim DJ, Lee JK, Lee CY. Genetic relationship between carcass traits and carcass price of Korean cattle. Asian-Australas J Anim Sci 2010;23:848-54. https://doi.org/10.5713/ajas.2010.90555 DOI |
14 | Choi TJ, Alam M, Cho CI, et al. Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle. J Anim Sci 2015;93:1511-21. https://doi.org/10.2527/jas.20147953 DOI |
15 | Bhuiyan MSA, Kim HJ, Lee DH, et al. Genetic parameters of carcass and meat quality traits in different muscles (longissimus dorsi and semimembranosus) of Hanwoo (Korean cattle). J Anim Sci 2017;95:3359-69. https://doi.org/10.2527/jas.2017.1493 DOI |
16 | Park B, Choi T, Kim S, Oh SH. National genetic evaluation (system) of Hanwoo (Korean native cattle). Asian-Australas J Anim Sci 2013;26:151-6. https://doi.org/10.5713/ajas.2012.12439 DOI |
17 | Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th world congress on genetics applied to livestock production; 2002: Montpellier, France. pp. 743-44 |
18 | Meyer K. WOMBAT-a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J Zheijang Univ Sci B 2007;8:815-21. https://doi.org/10.1631/jzus.2007.B0815 DOI |
19 | Lee SH, Choi BH, Lim D, et al. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle). PLoS One 2013;8:e74677. https://doi.org/10.1371/journal.pone.0074677 DOI |
20 | Riley DG, Chase CC, Hammond AC, et al. Estimated genetic parameters for carcass traits of Brahman cattle. J Anim Sci 2002;80:955-62. https://doi.org/10.2527/2002.804955x DOI |
21 | Smith T, Domingue JD, Paschal JC, Franke DE, Bidner TD, Whipple G. Genetic parameters for growth and carcass traits of Brahman steers. J Anim Sci 2007;85:1377-84. https://doi.org/10.2527/jas.2006-653 DOI |
22 | Takeda M, Uemoto Y, Inoue K, et al. Evaluation of feed efficiency traits for genetic improvement in Japanese Black cattle. J Anim Sci 2018;96:797-805. https://doi.org/10.1093/jas/skx054 DOI |
23 | Yokoo MJ, Lobo RB, Araujo FRC, Bezerra LAF, Sainz RD, Albuquerque LG. Genetic associations between carcass traits measured by real-time ultrasound and scrotal circumference and growth traits in Nelore cattle. J Anim Sci 2010;88:52-8. https://doi.org/10.2527/jas.2008-1028 DOI |
24 | Zuin RG, Buzanskas ME, Caetano SL, et al. Genetic analysis on growth and carcass traits in Nelore cattle. Meat Sci 2012; 91:352-7. https://doi.org/10.1016/j.meatsci.2012.02.018 DOI |
25 | Kemp DJ, Herring WO, Kaiser CJ. Genetic and environmental parameters for steer ultrasound and carcass traits. J Anim Sci 2002;80:1489-96. https://doi.org/10.2527/2002.8061489x DOI |
26 | Arthur PF, Archer JA, Johnston DJ, Herd RM, Richardson EC, Parnell PF. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J Anim Sci 2001;79:280511. https://doi.org/10.2527/2001.79112805x DOI |
27 | Schenkel FS, Miller SP, Wilton JW. Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. Can J Anim Sci 2004;84: 177-85. https://doi.org/10.4141/A03-085 DOI |
28 | Ceacero TM, Mercadante MEZ, Cyrillo JNSG, Canesin RC, Bonilha SFM, Albuquerque LG. Phenotypic and genetic correlations of feed efficiency traits with growth and carcass traits in Nellore cattle selected for postweaning weight. PLoS One 2016;11:e0161366. https://doi.org/10.1371/journal.pone.0161366 DOI |
29 | Hoque MA, Hiramoto K, Oikawa T. Genetic relationship of feed efficiency traits of bulls with growth and carcass traits of their progeny for Japanese Black (Wagyu) cattle. Anim Sci J 2005;76:107-14. https://doi.org/10.1111/j.1740-0929.2005.00244.x DOI |
30 | Oikawa T, Hoque MA, Hitomi T, Suzuki K, Uchida H. Genetic parameters for traits in performance and progeny tests and their genetic relationships in Japanese Black cattle. Asian-Australas J Anim Sci 2006;19:611-6. https://doi.org/10.5713/ajas.2006.611 DOI |
31 | Coyne JM, Judge MM, Conroy S, Berry DP. Variance component estimation of efficiency, carcass and meat quality traits in beef cattle. In: Proceedings of the World Congress on Genetics Applied to Livestock Production; 2018. pp. 912. |
32 | Koots KR, Gibson JP, Smith C, Wilton JW. Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Anim Breed Abstr 1994;62:309-38. |
33 | Do CH, Park BH, Kim SD, et al. Genetic parameter estimates of carcass traits under national scale breeding scheme for beef cattle. Asian-Australas J Anim Sci 2016;29:1083-94. https://doi.org/10.5713/ajas.15.0696 DOI |
34 | Mao F, Chen L, Vinsky M, et al. Phenotypic and genetic relationships of feed efficiency with growth performance, ultrasound, and carcass merit traits in Angus and Charolais steers. J Anim Sci 2013;91:2067-76. https://doi.org/10.2527/jas.2012-5470 DOI |
35 | Hwang JM, Cheong JK, Kim SS, et al. Genetic analysis of ultrasound and carcass measurement traits in a regional Hanwoo steer population. Asian-Australas J Anim Sci 2014; 27:457-63. https://doi.org/10.5713/ajas.2013.13543 DOI |