• Title/Summary/Keyword: Genetic network

검색결과 1,144건 처리시간 0.029초

유전자 알고리즘을 이용한 이동로봇의 지능제어 (An Intelligent Control of Mobile Robot Using Genetic Algorithm)

  • 한성현
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.126-132
    • /
    • 2004
  • This paper proposed trajectory tracking control based on genetic algorithm. Trajectory tracking control scheme are real coding genetic algorithm(RCGA) and back-propagation algorithm(BPA). Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studies have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using real coding genetic algorithm and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verity numerical simulations and the results show better performance than constant gain controller.

유전 알고리즘을 이용한 Wibro MMR 네트워크의 최적 배치 탐색 (Optimal topology in Wibro MMR Network Using a Genetic Algorithm)

  • 오동익;김우제
    • 대한산업공학회지
    • /
    • 제34권2호
    • /
    • pp.235-245
    • /
    • 2008
  • The purpose of this paper is to develop a genetic algorithm to determine the optimal locations of base stations and relay stations in Wibro MMR Network. Various issues related to the genetic algorithm such as solution representation, selection method, crossover operator, mutation operator, and a heuristic method for improving the quality of solutions are presented. The computational results are presented for determining optimal parameters for the genetic algorithm, and show the convergence of the genetic algorithm.

지능형 하이브리드 자기 동조 기법을 이용한 강건 제어기 설계 (PThe Robust Control System Design using Intelligent Hybrid Self-Tuning Method)

  • 권혁창;하상형;서재용;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.325-329
    • /
    • 2003
  • This paper discuss the method of the system's efficient control using a Intelligent hybrid algorithm in nonlinear dynamics systems. Existing neural network and genetic algorithm for the control of non-linear systems work well in static states. but it be not particularly good in changeable states and must re-learn for the control of the system in the changed state. This time spend a lot of time. For the solution of this problem we suggest the intelligent hybrid self-tuning controller. it includes neural network, genetic algorithm and immune system. it is based on neural network, and immune system and genetic algorithm are added against a changed factor. We will call a change factor an antigen. When an antigen broke out, immune system come into action and genetic algorithm search an antibody. So the system is controled more stably and rapidly. Moreover, The Genetic algorithm use the memory address of the immune bank as a genetic factor. So it brings an advantage which the realization of a hardware easy.

  • PDF

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

유전알고리즘과 신경회로망을 이용한 플라즈마 식각공정의 모델링과 최적제어입력탐색 (Modeling and optimal control input tracking using neural network and genetic algorithm in plasma etching process)

  • 고택범;차상엽;유정식;우광방;문대식;곽규환;김정곤;장호승
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.113-122
    • /
    • 1996
  • As integrity of semiconductor device is increased, accurate and efficient modeling and recipe generation of semiconductor fabrication procsses are necessary. Among the major semiconductor manufacturing processes, dry etc- hing process using gas plasma and accelerated ion is widely used. The process involves a variety of the chemical and physical effects of gas and accelerated ions. Despite the increased popularity, the complex internal characteristics made efficient modeling difficult. Because of difficulty to determine the control input for the desired output, the recipe generation depends largely on experiences of the experts with several trial and error presently. In this paper, the optimal control of the etching is carried out in the following two phases. First, the optimal neural network models for etching process are developed with genetic algorithm utilizing the input and output data obtained by experiments. In the second phase, search for optimal control inputs in performed by means of using the optimal neural network developed together with genetic algorithm. The results of study indicate that the predictive capabilities of the neural network models are superior to that of the statistical models which have been widely utilized in the semiconductor factory lines. Search for optimal control inputs using genetic algorithm is proved to be efficient by experiments. (author). refs., figs., tabs.

  • PDF

유전자 네트워크에서 확률적 그래프 모델을 이용한 정보 네트워크 추론 (Informatics Network Representation Using Probabilistic Graphical Models of Network Genetics)

  • 나상동;박동석;윤영지
    • 한국정보통신학회논문지
    • /
    • 제10권8호
    • /
    • pp.1386-1392
    • /
    • 2006
  • 유전자 생물학 분야에서 여러 각도로 세포 간 네트워크를 입증하는 고 처리 정보공학 WWW에 응용하려는 수치학적인 표현 모델 분석 연구한다. 확률적 그래프 모델을 사용하여 데이터 네트워크로부터 생물학적 통찰력을 확률적 함수적으로 응용해 복잡한 세포 간 네트워크 보다 단순한 하부모델로 구성하여 유전자 베이스네트워크 논리를 유전자 표현 레벨로 나타낸다. 유전자 데이터로부터 확률적 그래프 모델들을 분석하여 유전자 표현 데이터를 정보 공학 네트워크 모델의 방법으로 확장 추론한다.

The Comparison of Neural Network Learning Paradigms: Backpropagation, Simulated Annealing, Genetic Algorithm, and Tabu Search

  • Chen Ming-Kuen
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.696-704
    • /
    • 1998
  • Artificial neural networks (ANN) have successfully applied into various areas. But, How to effectively established network is the one of the critical problem. This study will focus on this problem and try to extensively study. Firstly, four different learning algorithms ANNs were constructed. The learning algorithms include backpropagation, simulated annealing, genetic algorithm, and tabu search. The experimental results of the above four different learning algorithms were tested by statistical analysis. The training RMS, training time, and testing RMS were used as the comparison criteria.

  • PDF

대중교통망에서의 최단경로 탐색을 위한 유전자 알고리즘 (A Genetic Algorithm for Searching Shortest Path in Public Transportation Network)

  • 장인성;박승헌
    • 경영과학
    • /
    • 제18권1호
    • /
    • pp.105-118
    • /
    • 2001
  • The common shortest path problem is to find the shortest route between two specified nodes in a transportation network with only one traffic mode. The public transportation network with multiple traffic mode is a more realistic representation of the transportation system in the real world, but it is difficult for the conventional shortest path algorithms to deal with. The genetic algorithm (GA) is applied to solve this problem. The objective function is to minimize the sum of total service time and total transfer time. The individual description, the coding rule and the genetic operators are proposed for this problem.

  • PDF

Searching Algorithms Implementation and Comparison of Romania Problem

  • Ismail. A. Humied
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.105-110
    • /
    • 2024
  • Nowadays, permutation problems with large state spaces and the path to solution is irrelevant such as N-Queens problem has the same general property for many important applications such as integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming, telecommunications network optimization, vehicle routing, and portfolio management. Therefore, methods which are able to find a solution are very important. Genetic algorithm (GA) is one the most well-known methods for solving N-Queens problem and applicable to a wide range of permutation problems. In the absence of specialized solution for a particular problem, genetic algorithm would be efficient. But holism and random choices cause problem for genetic algorithm in searching large state spaces. So, the efficiency of this algorithm would be demoted when the size of state space of the problem grows exponentially. In this paper, the new method presented based on genetic algorithm to cover this weakness. This new method is trying to provide partial view for genetic algorithm by locally searching the state space. This may cause genetic algorithm to take shorter steps toward the solution. To find the first solution and other solutions in N-Queens problem using proposed method: dividing N-Queens problem into subproblems, which configuring initial population of genetic algorithm. The proposed method is evaluated and compares it with two similar methods that indicate the amount of performance improvement.

타부 리스트가 결합된 유전자 알고리즘을 이용한 트리형 네트워크의 경제적 설계 (Economic Design of Tree Network Using Tabu List Coupled Genetic Algorithms)

  • 이성환;이한진;염창선
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.10-15
    • /
    • 2012
  • This paper considers an economic design problem of a tree-based network which is a kind of computer network. This problem can be modeling to be an objective function to minimize installation costs, on the constraints of spanning tree and maximum traffic capacity of sub tree. This problem is known to be NP-hard. To efficiently solve the problem, a tabu list coupled genetic algorithm approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.