• 제목/요약/키워드: Genetic map

검색결과 297건 처리시간 0.041초

인공지능에 의한 MAP 네트워크의 성능관리기 개발 (Development of MAP Network Performance Manger Using Artificial Intelligence Techniques)

  • 손준우;이석
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.46-55
    • /
    • 1997
  • This paper presents the development of intelligent performance management of computer communication networks for larger-scale integrated systems and the demonstration of its efficacy using computer simula- tion. The innermost core of the performance management is based on fuzzy set theory. This fuzzy perfor- mance manager has learning ability by using principles of neuro-fuzzy model, neuralnetwork, genetic algo- rithm(GA). Two types of performance managers are described in this paper. One is the Neuro-Fuzzy Per- formance Manager(NFPM) of which learning ability is based on the conventional gradient method, and the other is GA-based Neuro-Fuzzy Performance Manager(GNFPM)with its learning ability based on a genetic algorithm. These performance managers have been evaluated via discrete event simulation of a computer network.

  • PDF

조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발 (Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding)

  • 이경호;양영순;오준;박종훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF

CONSIDERATIONS IN THE DEVELOPMENT OF FUTURE PIG BREEDING PROGRAM - REVIEW -

  • Haley, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권4호
    • /
    • pp.305-328
    • /
    • 1991
  • Pig breeding programs have been very successful in the improvement of animals by the simple expedient of focusing on a few traits of economic importance, particularly growth efficiency and leanness. Further reductions in leanness may become more difficult to achieve, due to reduced genetic variation, and less desirable, due to adverse correlated effects on meat and eating quality. Best linear unbiased prediction (BLUP) of breeding values makes possible the incorporation of data from many sources and increases the value of including traits such as sow performance in the breeding objective. Advances in technology, such as electronic animal identification, electronic feeders, improved ultrasonic scanners and automated data capture at slaughter houses, increase the number of sources of information that can be included in breeding value predictions. Breeding program structures will evolve to reflect these changes and a common structure is likely to be several or many breeding farms genetically linked by A.i., with data collected on a number of traits from many sources and integrated into a single breeding value prediction using BLUP. Future developments will include the production of a porcine gene map which may make it possible to identify genes controlling economically valuable traits, such as those for litter size in the Meishan, and introgress them into nucleus populations. Genes identified from the gene map or from other sources will provide insight into the genetic basis of performance and may provide the raw material from which transgenic programs will channel additional genetic variance into nucleus populations undergoing selection.

Energy-Efficient Resource Allocation for Heterogeneous Cognitive Radio Network based on Two-Tier Crossover Genetic Algorithm

  • Jiao, Yan;Joe, Inwhee
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.112-122
    • /
    • 2016
  • Cognitive radio (CR) is considered an attractive technology to deal with the spectrum scarcity problem. Multi-radio access technology (multi-RAT) can improve network capacity because data are transmitted by multiple RANs (radio access networks) concurrently. Thus, multi-RAT embedded in a cognitive radio network (CRN) is a promising paradigm for developing spectrum efficiency and network capacity in future wireless networks. In this study, we consider a new CRN model in which the primary user networks consist of heterogeneous primary users (PUs). Specifically, we focus on the energy-efficient resource allocation (EERA) problem for CR users with a special location coverage overlapping region in which heterogeneous PUs operate simultaneously via multi-RAT. We propose a two-tier crossover genetic algorithm-based search scheme to obtain an optimal solution in terms of the power and bandwidth. In addition, we introduce a radio environment map to manage the resource allocation and network synchronization. The simulation results show the proposed algorithm is stable and has faster convergence. Our proposal can significantly increase the energy efficiency.

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

Identification of the quantitative trait loci (QTL) for seed protein and oil content in soybean.

  • Jeong, Namhee;Park, Soo-Kwon;Ok, Hyun-Choong;Kim, Dool-Yi;Kim, Jae-Hyun;Choi, Man-Soo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.148-148
    • /
    • 2017
  • Soybean is an important economical resource of protein and oil for human and animals. The genetic basis of seed protein and oil content has been separately characterized in soybean. However, the genetic relationship between seed protein and oil content remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation and linkage mapping to dissect the relationship between seed protein and oil content. A $F_{10:11}$ RIL population containing 222 lines, derived from the cross between two Korean soybean cultivars Seadanbaek as female and Neulchan as male parent, were used in this experiment. Soybean seed analyzed were harvested in three different experimental environments. A genetic linkage map was constructed with 180K SoyaSNP Chip and QTLs of both traits were analyzed using the software QTL IciMapping. QTL analyses for seed protein and oil content were conducted by composite interval mapping across a genome wide genetic map. This study detected four major QTL for oil content located in chromosome 10, 13, 15 and 16 that explained 13.2-19.8% of the phenotypic variation. In addition, 3 major QTL for protein content were detected in chromosome 10, 11 and 16 that explained 40.8~53.2% of the phenotypic variation. A major QTLs was found to be associated with both seed protein and oil content. A major QTL were mapped to soybean chromosomes 16, which were designated qHPO16. These loci have not been previously reported. Our results reveal a signi cant genetic relationship between seed protein and oil fi content traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved seed protein and oil content.

  • PDF

한국산 참굴(Crassostrea gigas) 미토콘드리아 DNA의 유전적 분석 (Genetic Analysis of Mitochondrial DNA from Korean Oysters, Crassostrea gigas)

  • 김상해;박미선;김영훈;박두원
    • 한국수산과학회지
    • /
    • 제30권5호
    • /
    • pp.804-808
    • /
    • 1997
  • 한국산 참굴의 유전적 특성을 조사하기 위하여 한국의 지역별 참굴을 대상으로 mtDNA 제한효소 절편분석과 클로닝을 수행하였다. 지역별로 각각 20개체의 mtDNA에 대하여 8가지 제한효소를 사용하여 DNA 절편양상을 분석한 결과 서해안산 참굴에서는 개체간 차이가 없는 단일 양상이었으며 남해안산의 경우는 두 가지 양상을 보였으며 차이는 HindIII 절단양상에서만 나타났다. 그 중 소수 개체들에서 나타난 양상은 서해안산 개체들에서의 양상과 동일하여 남해안에 서해안산 참굴이 유입되어 혼재하는 것으로 추정되었다. 한국산 참굴의 mtDNA를 대장균 E. coli HB101에서 클로닝하여 유전적 분석을 용이하도록 하였다. 전체 mtDNA를 제한효소를 사용하여 세부분으로 나누어 pUC19 유전자운반체에 클로닝하였다. 클로닝된 재조합 DNA를 제한효소들로 절단하여 한국산 참굴 mtDNA의 제한효소지도를 작성하였다. 남해안산과 서해안산 참굴 mtDNA에서 HindIII 적단 양상이 다르게 나타남을 확인하였고 이는 남해안산이나 서해안산에서 염기치환의 돌연변이에 의한 것으로 사료되었다.

  • PDF

Identification of Candidate SNP (Single Nucleotide Polymorphism) for Growth and Carcass Traits Related to QTL on Chromosome 6 in Hanwoo (Korean Cattle)

  • Lee, Y.S.;Lee, J.H.;Lee, J.Y.;Kim, J.J.;Park, H.S.;Yeo, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권12호
    • /
    • pp.1703-1709
    • /
    • 2008
  • As genetic markers, single nucleotide polymorphisms (SNP) are very appropriate for the development of genetic tests for economic traits in livestock. Several microsatellite markers have been identified as useful markers for the genetic improvement of Hanwoo. Among those markers, ILSTS035 was recently mapped at a similar position with four SNPs (AH1_11, AH1_9, 31465_446, and 12273_165) in a linkage map of EST-based SNP in BAT6. Among the four SNPs, two SNPs (31465_446 and 12273_165) were analyzed using BLAST at the NCBI web site. The sequences including the 12273_165 SNP were identified at the intron region within the LOC534614 gene on the gene sequence map (Bos taurus NCBI Map view, build 3.1). The LOC534614 gene represents a protein similar to myosin heavy chain, fat skeletal muscle, embryonic isoform 1 in the dog, and myosin_1 (Myosin heavy chain D) in Macaca mulatta. In cattle, the myosin heavy chain was associated with muscle development. The phenotypic data for growth and carcass traits in the 415 animals were analyzed by the mixed ANCOVA (analysis of covariance) linear model using PROC GLM module in SAS v9.1. By the genotyping of Hanwoo individuals (n = 415) to evaluate the association of SNP with growth and carcass traits, it was shown that the 12273_165 SNP region within LOC534614 may be a candidate marker for growth. The results of the statistical analyses suggested that the genotype of the 12273_165 SNP significantly affected birth weight, weight of the cattle at 24 months of age, average daily gain and carcass cold weight (p<0.05). Consequently, the 12273_165 SNP polymorphisms at the LOC534614 gene may be associated with growth in Hanwoo, and functional validation of polymorphisms in LOC534614 should be performed in the future.

Development of Molecular Markers for Xanthomonas axonopodis Resistance in Soybean

  • Kim Ki-Seung;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.429-433
    • /
    • 2004
  • A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-susceptible Jangyeobkong were used to identify molecular markers linked to rxp. Fifteen simple sequence repeat (SSR) markers on LG D2 were screened to construct a genetic map of rxp locus. Only four SSR markers, Satt135, Satt372, Satt448, and Satt486, showed parental polymorphisms. Using these markers, genetic scaffold map was constructed covering 26.2cM. Based on the single analysis of variance, Satt372 among these four SSR markers was the most significantly associated with the resistance to BLP. To develop new amplified fragment length polymorphism (AFLP) marker linked to the resistance gene, bulked segregant analysis (BSA) was employed. Resistance and susceptible bulks were made by pooling equal amount of genomic DNAs from ten of each in the segregating population. A total of 192 primer combinations were used to identify specific bands to the resistance, selecting three putative AFLP markers. These AFLP markers produced the fragment present in SS2-2 and the resistant bulk, and not in Jangyeobkong and the susceptible bulk. Linkage analysis revealed that McctEact97 $(P=0.0004,\;R^2=14.67\%)$ was more significant than Satt372, previously reported as the most closely linked marker.

Identification of Differentially Expressed Genes in Bovine Follicular Cystic Ovaries

  • Choe, Chang-Yong;Cho, Young-Woo;Kim, Chang-Woon;Son, Dong-Soo;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.265-272
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the most frequently diagnosed ovarian diseases and is a major cause of reproductive failure in mammalian species. However, the mechanism by which FCO is induced remains unclear. Genetic alterations which affect the functioning of many kinds of cells and/or tissues could be present in cystic ovaries. In this study, we performed a comparison analysis of gene expression in order to identify new molecules useful in discrimination of bovine FCO with follicular cystic follicles (FCFs). Normal follicles and FCFs were classified based on their sizes (5 to 10 mm and $\geq25mm$). These follicles had granulosa cell layer and theca interna and the hormone $17{\beta}$-estradiol ($E_2$)/ progesterone ($P_4$) ratio in follicles was greater than one. Perifollicular regions including follicles were used for the preparation of RNA or protein. Differentially expressed genes (DEG) that showed greater than a 2-fold change in expression were screened by the annealing control primer (ACP)-based PCR method using $GeneFishing^{TM}$ DEG kits in bovine normal follicles and FCFs. We identified two DEGs in the FCFs: ribosomal protein L15 (RPL15) and microtubule-associated protein 1B (MAP1B) based on BLAST searches of the NCBI GenBank. Consistent with the ACP analysis, semi-quantitative PCR data and Western blot analyses revealed an up-regulation of RPL15 and a down-regulation of MAP1B in FCFs. These results suggest that RPL15 and MAP1B may be involved in the regulation of pathological processes in bovine FCOs and may help to establish a bovine gene data-base for the discrimination of FCOs from normal ovaries.