Transactions of the Korean Society of Mechanical Engineers A
/
v.21
no.9
/
pp.1462-1469
/
1997
This study presents a genetic algorithm-based method for optimizing control parameters in fluid power systems. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics. A genetic algorithm seeks control parameters maximizing a measure that evaluates system performance. Five control gains of the PID-PD cascade controller fr an electrohydraulic speed control system with a variable displacement hydraulic motor are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that optimization of the five gains by manual tuning should be a task of great difficulty and that a genetic algorithm is an efficient scheme giving economy of time and in labor in optimizing control parameters of fluid power systems.
Analysis of breeding gains in grain yield has been intensively conducted in wheat, barley, oat, maize, and soybean. Such information is limited in rice. The objective of this study was to compare the breeding gains and cultural gains contributed to yield gains of Korean rice varieties since early 1900s. Two sets of yield data were used for analysis; the historical yield data of 1908 for old japonica cultivars, and present yield data in the years from 1996 to 1998 for the six cultivars, consisting of previous two old cultivars and four contemporary cultivars. The old cultivars were two native cultivars, Jodongi and Damageum, while contemporary cultivars were two premium quality japonica cultivars, Hwaseongbyeo and Dongjinbyeo, and two Tongil-type cultivars, high yielding cultivars developed from indica/japonica hybridization, Milyang23 and Dasanbyeo. The yield differences of old cultivars between the experiments in 1908 and the experiments from 1996 to 1998 were estimated as cultural gains (1.84 tons $\textrm{ha}^{-1}$) due to the improvement of cultivation technology. Yield differences between the old cultivars and contemporary cultivars were considered total yield gains during the periods. These were 2.51 tons $\textrm{ha}^{-1}$ for japonica cultivars and 3.81 tons $\textrm{ha}^{-1}$ for Tongil-type cultivars. From these data, the genetic gain of 0.67 tons $\textrm{ha}^{-1}$ and 1.97 tons $\textrm{ha}^{-1}$ were estimated for japonica cultivars and Tongil-type cultivars respectively. The ratio between cultural gain and genetic gain appeared to be 2.7:1 for japonica cultivars and 1:1 for Tongil-type cultivars. This analysis clearly showed the higher genetic contribution in Tongil-type cultivars than in japonica cultivars, suggesting a guideline to be used when planning new yield improvement programs. Additional implication has emerged when a better yield response to modem cultivation technology was found in one of the old cultivars, suggesting the combined improvement between breeding and cultural improvement is necessary for attaining the maximum yield capacity of a crop.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.4
/
pp.698-706
/
2016
In order to move mobile robots to desired locations in a minimum time, optimal control problems have to be solved; however, their analytic solutions are almost impossible to obtain due to robot nonlinear equations. This paper presents a method to get optimal control gains of mobile robots using genetic algorithms. Since the optimal control gains of mobile robots depend on the initial conditions, the initial condition range is discretized to form some grid points, and genetic algorithms are applied to provide the optimal control gains for the corresponding grid points. The optimal control gains for general initial conditions may be obtained by use of neural networks. So the optimal control gains and the corresponding grid points are used to train neural networks. The trained neural networks can supply pseudo-optimal control gains. Finally simulation studies have been conducted to verify the effectiveness of the method presented in this paper.
The objectives of this study were to examine the genetic variation of 20-year-old tree height and to estimate heritabilities and genetic gains of Korean white pine. Analysis of variance showed that families and family x block interaction had the significant (p=0.01) effects on tree height. However, family variation appears to be much greater than the variation due to family x block interaction. Individual tree heritability was higher ($h_I^2=0.73$) than family heritability, ($h_F^2=0.83$) therefore, combined selection showed the largest genetic gain (17.76%) in a given equal intensity of selection.
Ghiasi, Heydar;Piwczynski, Dariusz;Sitkowska, Beata;Gonzalez-Recio, Oscar
Animal Bioscience
/
v.34
no.8
/
pp.1303-1308
/
2021
Objective: The objective of this study was to define a new composite trait for Holstein dairy cows and evaluate the possibility of joint improvement in milk and fertility traits. Methods: A data set consisting 35,882 fertility related records (days open [DO], calving interval [CI], and number of services per conception [NSC], and total milk yield in each lactation [TMY]) was collected from 1998 to 2016 in Polish Holstein-Friesian breed herds. In this study TMY, DO, CI, and lactation length of each cow was used to obtain composite milk and fertility traits (CMF). Results: Moderate heritability (0.15) was estimated for composite trait that was higher than heritability of female fertility related traits: DO 0.047, CI 0.042, and NSC 0.014, and slightly lower than heritability of TMY 0.19. Favourable genetic correlations (-0.87) were estimated between CMF with TMY. Spearman rank correlation coefficients between breeding value of CMF with DO, CI, and TMY were high (>0.94) but with NSC were moderate (0.64). Selection on CMF caused favourable correlated genetic gains for DO, CI, and TMY. Different selection indices with different emphasis on fertility and milk production were constructed. The amount of correlated genetic gains obtained for DO and total milk production according to selection in CMF were higher than of genetic gains obtained for DO and TMY in selection indices with different emphasis on milk and fertility. Conclusion: The animal selection only based on a composite trait - CMF proposed in current study would simultaneously lead to favourable genetic gains for both milk and fertility related traits. In this situation CMF introduced in current study can be used to overcome to limitations of selection index and CMF could be useful for countries that have problems in recording traits, especially functional traits.
The aim of this paper is to suggest a design method of the model following optimal boiler-turbine H.inf. control system using genetic algorithm. This boiler-turbine H.inf. control system is designed by applying genetic algortihm with reference model to the optimal determination of weighting functions and design parameter .gamma. that are given by Glover-Doyle algornithm whch can design H.inf. contrlaaer in the sate. space. The first method to do this is ghat the gains of weightinf functions and .gamma. are optimized simultaneously by genetic algroithm. And the second method is that not only the gains and .gamma. but also the dynamics of weighting functions are optimized at the same time by genetic algonithm. The effectiveness of this boiler-turbine H.inf. control system is verified and compared with LQG/LTR control system by computer simulation.
Transactions of the Korean Society of Machine Tool Engineers
/
v.13
no.3
/
pp.126-132
/
2004
This paper proposed trajectory tracking control based on genetic algorithm. Trajectory tracking control scheme are real coding genetic algorithm(RCGA) and back-propagation algorithm(BPA). Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studies have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using real coding genetic algorithm and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verity numerical simulations and the results show better performance than constant gain controller.
Journal of the Korean Society for Precision Engineering
/
v.21
no.9
/
pp.48-55
/
2004
This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.8
/
pp.1811-1817
/
2014
In this paper, a PID controller with interpolated gains by use of neural networks is proposed for the formation control problem that following robots track a leading robot with constant distances and angles when there are changes in the mass of the following robot. The whole control system is composed of a kinematic controller and a dynamic controller considering the robot dynamics. The dynamic controller is the PID controller with varying gains, and the proper gains are obtained for some representative masses of the follower robot by the genetic algorithm. Neural networks is trained using the genetic algorithm with the gain data obtained in the previous step. The trained neural network determines optimal PID gains for a random mass of following robot. Simulation studies show that for arbitrary masses of the tracking robot, the PID controller with interpolated gains by the trained neural network has better tracking performance than that of the PID controller with fixed gains.
Objective: The purpose of this study was to compare intended and actual yearly genetic gains for milk production and conformation traits and to investigate the simple selection criterion practiced among milk production and conformation traits during the last two decades in Japan. Learning how to utilize the information on intended and actual genetic gains during the last two decades into the genomic era is vital. Methods: Genetic superiority for each trait for four paths of selection (sires to breed bulls [SB], sires to breed cows [SC], dams to breed bulls [DB], and dams to breed cows [DC]) was estimated. Actual practiced simple selection criteria were investigated among milk production and conformation traits and relative emphasis on milk production and conformation traits was compared. Results: Selection differentials in milk production traits were greater than those of conformation traits in all four paths of selection. Realized yearly genetic gain was less than that intended for milk production traits. Actual annual genetic gain for conformation traits was equivalent to or greater than intended. Retrospective selection weights of milk production and conformation traits were 0.73:0.27 and 0.56:0.44 for intended and realized genetic gains, respectively. Conclusion: Selection was aimed more toward increasing genetic gain in milk production than toward conformation traits over the past two decades in Japan. In contrast, actual annual genetic gain for conformation traits was equivalent to or greater than intended. Balanced selection between milk production and conformation traits tended to be favored during actual selection. Each of four paths of selection (SB, SC, DB, and DC) has played an individual and important role. With shortening generation interval in the genomic era, a young sire arises before the completion of sire's daughters' milk production records. How to integrate these four paths of selection in the genomic era is vital.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.