• 제목/요약/키워드: Genetic association study

검색결과 1,566건 처리시간 0.036초

Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: insights from quantitative trait loci analysis and gene associations

  • Thawee Laodim;Skorn Koonawootrittriron;Mauricio A. Elzo;Thanathip Suwanasopee;Danai Jattawa;Mattaneeya Sarakul
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.576-590
    • /
    • 2024
  • Objective: The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions. Methods: A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-year-season, breed regression, heterosis regression and calving age regression effects. Random effects were animal additive genetic and residual. Individual SNPs with a p-value smaller than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci (QTL) annotation analysis. Results: A substantial number of QTLs associated with MY (9,334) and FY (8,977) were identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 17 annotated QTLs within the health and exterior QTL classes, corresponding to nine unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed signs of positive selection, indicating their potential role in conferring tolerance to trypanosomiasis, a prevalent tropical disease. Conclusion: Our findings provide valuable insights into the genetic basis of MY and FY in the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of tropical adaptation. The identified genes represent promising targets for future breeding strategies aimed at improving milk and fat production while ensuring resilience to tropical challenges. This study significantly contributes to our understanding of the genetic factors influencing milk production and adaptability in dairy cattle, facilitating the development of sustainable genetic selection strategies and breeding programs in tropical environments.

Comparison of Breeding System Between Single Population and Two Sub-population Scheme by Computer Simulation I. Equal genetic level for Sub-populations

  • Oikawa, T.;Matsura, Y.;Sato, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권4호
    • /
    • pp.422-427
    • /
    • 1997
  • Breeding efficiency was investigated to reveal crucial factors for constructing effective breeding system with subdivided populations under equal genetic level. Simulation study of selection experiment was performed for 20 generations with 20 replications each, comparing average breeding values and inbreeding coefficients between the two breeding systems; single population scheme and two population scheme, each of which had the same genetic parameters. Genetic correlations (-0.5 to 0.5) were assumed to be caused only by pleiotropic effect of a gene. Phenotypes of the two traits generated by polygenic effect with additive 36 loci and residuals distributed normally were selected by two traits selection index procedure. Comparing between the single population scheme and the two population scheme, the single population scheme showed higher genetic gain with lower inbreeding coefficient. This result was confirmed particularly for the situation of high selection intensity, high heritability and high degree of unevenness for economic weight. Genetic correlations in the single population scheme were significantly lower than the two population scheme when initial genetic correlation was negative. When terminal crossbreeding for the two population scheme is taken into account, superiority of the two population scheme was suggested. The terminal crossbreeding was effective under the situation of long term selection, existence of moderate inbreeding depression and use of less extreme economic weight.

Genetics of heifer reproductive traits in Japanese Black cattle

  • Setiaji, Asep;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.197-202
    • /
    • 2020
  • Objective: The objective of this study was to identify environmental factors strongly associated with and to estimate genetic parameters of reproductive traits in Japanese Black heifers. Methods: Data included reproduction records of Japanese Black heifers born between 2004 and 2014. First service non-return rate (NRR) to 56 days from first to successful insemination (FS), number of services per conception (IN), age at first calving (AFC) and gestation length were analyzed with the use of the general linear model. Genetic parameters were estimated with the use of the univariate animal model of the residual maximum likelihood. Results: Averages of reproductive traits over eleven years were assessed, and the effects of farm, year, month, artificial insemination technician and interaction of farm×year on the traits were determined. Estimated heritability of FS was very low and that of AFC was higher than that of the other traits. A close genetic relation was observed among NRR, IN, and FS; however, their heritabilities were very low. AFC shows favorable genetic correlation with IN and FS. Conclusion: Low heritabilities of most reproductive traits in Japanese Black heifers are strongly influenced by farm management practices, and that large residual variances make genetic evaluation difficult. Among the reproductive traits, AFC is potentially more useful for genetic improvement of heifer reproductive traits because it has high heritability and favorable genetic correlations with IN and FS.

Estimation of Genetic Variance and Covariance Components for Litter Size and Litter Weight in Danish Landrace Swine Using a Multivariate Mixed Model

  • Wang, C.D.;Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권7호
    • /
    • pp.1015-1018
    • /
    • 1999
  • Single trait mixed models have been dominantly utilized for genetic evaluation of the reproductive traits in swine. However employing multiple trait approach may lead to more accurate genetic evaluations. For 5 litter size and litter weight traits of Danish Landrace, genetic parameters were estimated with a multiple trait mixed model. The heritability estimates were 0.02, 0.03, 0.03, 0.05, and 0.07, respectively for litter size at birth, litter size born alive, litter weight at birth, litter size at weaning, and litter weight at weaning. Negative genetic correlations were all positive. The litter weight at birth showed genetic antagonism with litter size born alive (-0.65) and litter size at weaning (-0.31), but positive with litter size at birth (0.47) and litter weight at weaning (0.31). The estimates of environmental correlations were larger than their corresponding genetic correlation estimates except for those between litter weight at birth and the other four traits. This study recommends simultaneous selection for two or more traits with multivariate mixed models in order to improve overall economic response.

Genetic Diversity Measures of 8 Local Sheep Breeds in Northwest of China for Genetic Resource Conservation

  • Zeng, X.C.;Chen, H.Y.;Hui, W.Q.;Jia, B.;Du, Y.C.;Tian, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권12호
    • /
    • pp.1552-1556
    • /
    • 2010
  • The aim of this study was to evaluate, through the use of microsatellite markers, the current genetic diversity and the relationships of 375 individuals from 8 local sheep breeds reared in typical breeding farms in the northwest of China, and moreover, to offer a contribution towards genetic conservation decisions for the studied breeds. The expected heterozygosities and allelic richness for the 8 breeds varied from 0.474 to 0.623 and from 3.8 to 5.4, respectively. All the populations showed a significant deficit in heterozygosity and a relatively low level of genetic diversity. Furthermore, the high positive FIS value (ranging from 0.255 to 0.556) indicated inbreeding to be one of the main causes for high genetic homogeneity and lack of heterozygosity in all breeds. The clustering analysis performed with the DISPAN package showed that Aletai, Kazak, Bashibai and Bayinbuluke were grouped together, and Hetian, Qira black and Duolang were grouped together, which indicated that the relationship among breeds displayed some degree of consistency with their geographical distribution, production and origin. These findings indicate that improved conservation measures must be undertaken to avoid further losses of genetic diversity and minimize inbreeding represented by these breeds.

유전자 알고리즘을 이용한 주식투자 수익률 향상에 관한 연구 (A Study to Improve the Return of Stock Investment Using Genetic Algorithm)

  • 조희연;김영민
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제12권2호
    • /
    • pp.1-20
    • /
    • 2003
  • This paper deals with the application of the genetic algorithm to the technical trading rule of the stock market. MACD(Moving Average Convergence & Divergence) and the Stochastic techniques are widely used technical trading rules in the financial markets. But, it is necessary to determine the parameters of these trading rules in order to use the trading rules. We use the genetic algorithm to obtain the appropriate values of the parameters. We use the daily KOSPI data of eight years during January 1995 and October 2002 as the experimental data. We divide the total experimental period into learning period and testing period. The genetic algorithm determines the values of parameters for the trading rules during the teaming period and we test the performance of the algorithm during the testing period with the determined parameters. Also, we compare the return of the genetic algorithm with the returns of buy-hold strategy and risk-free asset. From the experiment, we can see that the genetic algorithm outperforms the other strategies. Thus, we can conclude that genetic algorithm can be used successfully to the technical trading rule.

  • PDF

Evaluation of Genetic Variability in Kenkatha Cattle by Microsatellite Markers

  • Pandey, A.K.;Sharma, Rekha;Singh, Yatender;Prakash, B.;Ahlawat, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권12호
    • /
    • pp.1685-1690
    • /
    • 2006
  • Kenkatha cattle, a draft purpose breed, which can survive in a harsh environment on low quality forage, was explored genetically exploiting FAO-suggested microsatellite markers. The microsatellite genotypes were derived by means of the polymerase chain reaction (PCR) followed by electrophoretic separation in agarose gels. The PCR amplicons were visualized by silver staining. The allelic as well as genotypic frequencies, heterozygosities and gene diversity were estimated using standard techniques. A total of 125 alleles was distinguished by the 21 microsatellite markers investigated. All the microsatellites were highly polymorphic with mean allelic number of 5.95${\pm}$1.9 (ranging from 3-10 per locus). The observed heterozygosity in the population ranged between 0.250 and 0.826 with a mean of 0.540${\pm}$0.171, signifying considerable genetic variation. Bottleneck was examined assuming all three mutation models which showed that the population has not experienced bottleneck in recent past. The population displayed a heterozygote deficit of 21.4%. The study suggests that the breed needs to be conserved by providing purebred animals in the breeding tract.

Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers

  • Suh, Sangwon;Kim, Young-Sin;Cho, Chang-Yeon;Byun, Mi-Jeong;Choi, Seong-Bok;Ko, Yeoung-Gyu;Lee, Chang Woo;Jung, Kyoung-Sub;Bae, Kyoung Hun;Kim, Jae-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권11호
    • /
    • pp.1548-1553
    • /
    • 2014
  • Four Korean native cattle (KNC) breeds-Hanwoo, Chikso, Heugu, and Jeju black-are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources.

Evaluating genetic diversity and identifying priority conservation for seven Tibetan pig populations in China based on the mtDNA D-loop

  • Ge, Qianyun;Gao, Caixia;Cai, Yuan;Jiao, Ting;Quan, Jinqiang;Guo, Yongbo;Zheng, Wangshan;Zhao, Shengguo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1905-1911
    • /
    • 2020
  • Objective: Tibetan pigs, an excellent species unique to China, face serious threats, which in turn affects the development and utilization of the outstanding advantages of plateau hypoxia adaptability and reduces their genetic diversity. Therefore, a discussion of measures to conserve this genetic resource is necessary. The method, based on genetic diversity, genetic divergence and total genetic contribution rate of population, reflects the priority conservation order and varies depending on the three different purposes of conservation. Methods: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces and downloaded 564 mtDNA D-loop sequences from three indigenous pig breeds in Qinghai, Sichuan, and Yunnan Provinces distributed near the Tibetan pigs. Results: We analyzed three different aspects: Changdu Tibetan pigs have the highest genetic diversity, and from the perspective of genetic diversity, the priority conservation is Changdu Tibetan pigs. Hezuo Tibetan pigs have the highest genetic contribution, so the priority conservation is Hezuo Tibetan pigs in the genetic contribution aspect. Rkaze Tibetan pigs were severely affected by indigenous pig breeds, so if considering from the perspective of introgression, the priority conservation is Rkaze Tibetan pigs. Conclusion: This study evaluated genetic diversity and comprehensively assessed conservation priority from three different aspects in nine Tibetan pig populations.

Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens

  • Zhang, Lu;Zhu, Qing;Liu, Yiping;Gilbert, Elizabeth R.;Li, Diyan;Yin, Huadong;Wang, Yan;Yang, Zhiqin;Wang, Zhen;Yuan, Yuncong;Zhao, Xiaoling
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.763-770
    • /
    • 2015
  • Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5' flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens.