• 제목/요약/키워드: Genetic Simulation

Search Result 984, Processing Time 0.032 seconds

Genetic Algorithm Based Routing Method for Efficient Data Transmission for Reliable Data Transmission in Sensor Networks (센서 네트워크에서 데이터 전송 보장을 위한 유전자 알고리즘 기반의 라우팅 방법)

  • Kim, Jin-Myoung;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2007
  • There are many application areas of wireless sensor networks, such as combat field surveillance, terrorist tracking and highway traffic monitoring. These applications collect sensed data from sensor nodes to monitor events in the territory of interest. One of the important issues in these applications is the existence of the radio-jamming zone between source nodes and the base station. Depending on the routing protocol the transmission of the sensed data may not be delivered to the base station. To solve this problem we propose a genetic algorithm based routing method for reliable transmission while considering the balanced energy depletion of the sensor nodes. The genetic algorithm finds an efficient routing path by considering the radio-jamming zone, energy consumption needed fur data transmission and average remaining energy level. The fitness function employed in genetic algorithm is implemented by applying the fuzzy logic. In simulation, our proposed method is compared with LEACH and Hierarchical PEGASIS. The simulation results show that the proposed method is efficient in both the energy consumption and success ratio of delivery.

  • PDF

A 2-Dimension Torus-based Genetic Algorithm for Multi-disk Data Allocation (2차원 토러스 기반 다중 디스크 데이터 배치 병렬 유전자 알고리즘)

  • 안대영;이상화;송해상
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.9-22
    • /
    • 2004
  • This paper presents a parallel genetic algorithm for the Multi-disk data allocation problem an NP-complete problem. This problem is to find a method to distribute a Binary Cartesian Product File on disk-arrays to maximize parallel disk I/O accesses. A Sequential Genetic Algorithm(SGA), DAGA, has been proposed and showed the superiority to the other proposed methods, but it has been observed that DAGA consumes considerably lengthy simulation time. In this paper, a parallel version of DAGA(ParaDAGA) is proposed. The ParaDAGA is a 2-dimension torus-based Parallel Genetic Algorithm(PGA) and it is based on a distributed population structure. The ParaDAGA has been implemented on the parallel computer simulated on a single processor platform. Through the simulation, we study the impact of varying ParaDAGA parameters and compare the quality of solution derived by ParaDAGA and DAGA. Comparing the quality of solutions, ParaDAGA is superior to DAGA in all cases of configurations in less simulation time.

A Comparative Study between Genetic Programming and Central Pattern Generator Based Gait Generation Methods for Quadruped Robots (4족 보행로봇의 걸음새에 대한 Genetic Programming 기법과 Central Pattern Generator 기반 생성기법의 비교 연구)

  • Hyun, Soo-Hwan;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.749-754
    • /
    • 2009
  • Two gait generation methods using GP(genetic programming) and CPG(Central Pattern Generator) are compared to develop a fast locomotion for quadruped robot. GP based technique is an effective way to generate few joint trajectories instead of the locus of paw positions and lots of stance parameters. The CPGs are neural circuits that generate oscillatory output from a input coming from the brain. Optimization for two proposed methods are executed and analysed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are experimented in real quadruped robot and performances and motion features of GP and CPG based methods are investigated.

A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA) (다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델)

  • Imran, Muhammad;Kang, Changwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

Optimization of Stochastic System Using Genetic Algorithm and Simulation

  • 유지용
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.75-80
    • /
    • 1999
  • This paper presents a new method to find a optimal solution for stochastic system. This method uses Genetic Algorithm(GA) and simulation. GA is used to search for new alternative and simulation is used to evaluate alternative. The stochastic system has one or more random variables as inputs. Random inputs lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of they system. These estimates could greatly differ from the corresponding real characteristics for the system. We need multiple replications to get reliable information on the system. And we have to analyze output data to get a optimal solution. It requires too much computation to be practical. We address the problem of reducing computation. The procedure on this paper use GA character, an iterative process, to reduce the number of replications. The same chromosomes could exit in post and present generation. Computation can be reduced by using the information of the same chromosomes which exist in post and present current generation.

  • PDF

fuzzy sliding controller design using genetic algorithm (유전 알고리즘을 이용한 퍼지 슬라이딩 제어기 설계)

  • 한종길;유병국;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.964-967
    • /
    • 1996
  • In this paper, we present a fuzzy-sliding controller design using genetic algorithm. We can suppress chattering and enhance the robustness of controlled system by using this controller and do that genetic algorithm can easily find out a nearly optimal fuzzy rule performance of this controller is tested by simulation of car system with two pole.

  • PDF

Application of self organizing genetic algorithm

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.18-21
    • /
    • 1995
  • In this paper we describe a new method for multimodal function optimization using genetic algorithms(GAs). We propose adaptation rules for GA parameters such as population size, crossover probability and mutation probability. In the self organizing genetic algorithm(SOGA), SOGA parameters change according to the adaptation rules. Thus, we do not have to set the parameters manually. We discuss about SOGA and those of other approaches for adapting operator probabilities in GAs. The validity of the proposed algorithm will be verified in a simulation example of system identification.

  • PDF

Aperture Coupled Microstrip Antenna Design . Using Genetic Algorithms (유전자 알고리즘을 이용한 개구결합 마이크로스트립 안테나 설계)

  • 서호진;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.207-210
    • /
    • 1999
  • In this paper, aperture coupled microstrip antenna which has a larger bandwidth was designed using genetic algorithms. The genetic algorithms encodes each parameters which are the width, length of patch and the width, length of slot, into binary sequences, called a gen. Genetic algorithms searches a optimal gen to design a larger bandwidth. Simulation results are compared with Pozar's results.

  • PDF

Optimizing Reliable Network using Genetic Algorithm (유전자 알고리즘을 이용한 신뢰 통신망 최적화)

  • 이학종;강주락;권기호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.452-455
    • /
    • 1999
  • Genetic algorithm is well known as the efficient algorithm which can solve a difficult problem. Network design considering reliability is NP-hard problem with cost, distance, and volume. Therefore genetic algorithm is considered as a good method for this problem. This paper suggests the reliable network which can be constructed with minimum cost using genetic algorithm and the rank method based on reliability for improving the performance. This method shows more excellent than existing method and confirms the result through simulation.

  • PDF

A Efficient Controller Design with Fuzzy Logic and Genetic Algorithms (퍼지 로직과 유전자 알고리즘을 이용한 효율적인 제어기 설계)

  • 장원빈;김동일;권기호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.55-58
    • /
    • 2000
  • Previous works using a Multi-population Genetic Algorithm have divided chromosome into two components, rule sets and membership functions. However, in this case bad rule sets disturb optimization in good rule sets and membership functions. A new method for a Multi-population Genetic Algorithm suggests three components, good rule sets, bad rule sets, and membership functions. To show the effectiveness of this method, fuzzy controller is applied in a Truck Backing Problem. Results of the computer simulation show good adaptation of the proposed method for a Multi-population Genetic Algorithm.

  • PDF