• 제목/요약/키워드: Genetic Parameter

검색결과 643건 처리시간 0.024초

유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계 (The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms)

  • 이대근;오성권;장성환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

The Growth and Behavior of a Virtual Life by using Genetic Algorithm

  • Kwon, Min-Su;Kim, Do-Wan;Hoon Kang
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.621-626
    • /
    • 2003
  • In this paper, we modeled a virtual life (VL) that reacts to the user s action according to its own behavioral characteristics and grows itself. We established some conditions with which such a VL is designed. Genetic Algorithm is used for the growth process that changes the VL s properties. In this process, the parameter values of the VL s properties are encoded as one chromosome, and the GA operations change this chromosome. The VL s reaction to the user s action is determined by these properties as well as the general expectation of each reaction. These properties are evaluated through 5 fitness measures so as to deal with multi-objective criteria. Here, we present the simulation of the growth Process, and show some experimental results.

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • 제5권2호
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

실수코딩 유전알고리즘을 이용한 시스템 식별 (System Identification by Real-Coded Genetic Algorithm)

  • 안종갑;이윤형;진강규;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.599-605
    • /
    • 2007
  • This paper presents a method for identifying various systems based on input-output data and a real-coded genetic algorithm(RCGA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the original systems can be identified without the need of a differentiable measure function of linearly separable parameters. Under suitable hypotheses, the estimation error is shown to converge in probability to zero. The performance of the proposed algorithm is demonstrated through several simulations.

도파관 필터 설계에 사용가능한 유전 알고리즘 (Genetic algorithm for waveguide filter design)

  • 조용희
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.543-546
    • /
    • 2008
  • 위성시스템의 핵심기술중 하나인 도파관 필터를 효율적으로 설계할 수 있는 방법으로 유전 알고리즘을 소개한다. 그린함수와 모드정합법을 바탕으로 도파관 스텝으로 형성한 도파관 필터를 해석하고 각 매개변수에 대해 유전 알고리즘을 이용하여 최적화를 수행한다. 주파수 변화에 대한 삽입손실 특성을 계산하고 이를 실험과 비교한다.

  • PDF

개미 알고리즘을 융합한 적응형 유전알고리즘 (An Ant System Extrapolated Genetic Algorithm)

  • 김중항;이세영;장형수
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제32권8호
    • /
    • pp.399-410
    • /
    • 2005
  • 본 논문에서는 개미 군 집단 알고리즘을 융합한 새로운 적응형 유전 알고리즘을 제안하고, 제안된 알고리즘이 확률적으로 최적 해에 수렴함을 증명한다. 실험을 통해서, 제안된 알고리즘은 최적 해로의 수렴이 어려운 여러 가지 대표적인 함수들에 대하여 elitist 전략을 사용한 유전 알고리즘보다 더 빠른 속도로 최적 해에 수렴하고 한 군집 내의 모든 해들이 최적 해로 수렴하며 파라미터 값에 따라 새로운 탐색이나 현 상태로의 귀착의 정도를 조절할 수 있는 유연성 있는 알고리즘인 것을 보인다.

작물모형의 생물계절 및 잠재수량 예측력 개선 방법 탐색: I. 유전 모수 정보 향상으로 콩의 개화시기 및 잠재수량 예측력 향상이 가능한가? (Exploring Ways to Improve the Predictability of Flowering Time and Potential Yield of Soybean in the Crop Model Simulation)

  • 정유란;신평;서명철
    • 한국농림기상학회지
    • /
    • 제19권4호
    • /
    • pp.203-214
    • /
    • 2017
  • 본 연구에서는 진주, 수원, 춘천의 정보로만 추정한 유전 모수(New1~New3)와 지역 조합으로 추정한 유전 모수(New4~New7), NICS (2010)와 Kim et al. (2004)의 유전 모수의 개화시기 및 잠재수량의 예측력을 평가하여 기존의 유전 정보와 새로운 유전 정보에 대한 불확실 정도를 알고 다음 후속 연구에 활용 가능성을 알아보고자 수행했다. 결과적으로, 개별 및 지역조합 유전 모수에서 모수 추정 지점 혹은 참여한 지점의 유전 모수의 평가 지표들은 비교적 좋은 결과를 보여 주었지만 뚜렷하게 나타나지 않았다. 대구, 밀양, 전주에서 New7 유전 모수의 개화시기의 예측력은 NICS (2010)나 Kim et al. (2004)의 유전 모수의 개화 시기 예측력보다 개선되지 않았다. 그러나 New7 유전 모수의 잠재수량의 예측력은 큰 차이는 아니지만 NICS (2010)나 Kim et al. (2004)의 유전 모수의 잠재 수량 예측력보다 개선되는 현상을 보였다. 예를 들면, 밀양에서 NICS (2010)와 Kim et al. (2004)의 유전 모수의 잠재수량 결정계수가 0.00과 0.01로 전혀 예측력이 없는 것으로 평가하였지만 New7 유전 모수의 잠재수량 결정계수는 0.31로 나타났다. 반면, 전주에서 NICS (2010)과 Kim et al. (2004)의 유전 모수의 잠재수량 결정계수는 0.66과 0.41로 평가되었는데, New7 유전 모수의 잠재수량 결정계수는 0.00으로 예측력이 없는 것으로 평가되었다. 새로운 유전 모수의 예측력(New1~New7)이 기존의 유전 모수(NICS (2010)과 Kim et al. (2004))의 예측력보다 크게 개선되지는 않았지만, 평가 결과가 좋은 지역 조합 유전 모수를 지역별 개화시기 및 잠재수량을 예측하는 데에는 활용할 수 있을 것으로 판단된다.