• 제목/요약/키워드: Genetic Operation

검색결과 390건 처리시간 0.029초

A hybrid genetic algorithm for the optimal transporter management plan in a shipyard

  • Jun-Ho Park;Yung-Keun Kwon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.49-56
    • /
    • 2023
  • 본 연구에서는 트랜스포터의 할당 및 운행 순서를 최적화하기 위한 유전 알고리즘을 제안한다. 유전 알고리즘의 해는 리스트의 집합으로 표현되는데 각 리스트는 해당 트랜스포터가 작업할 순서를 나타낸다. 또한 성능 향상을 위해 효과적인 지역 탐색 연산을 결합한 혼합형 유전 알고리즘의 형태로 구현하였다. 지역 탐색 연산은 작업량이 적은 트랜스포터에서 작업의 블록을 꺼내어 다른 트랜스포터의 작업 목록에 삽입함으로써 트랜스포터 운용 대수의 감소를 유도한다. 제안하는 알고리즘의 효용성을 평가하기 위해 실제 조선소와 유사한 규모의 시뮬레이션 환경을 통해 Multi-Start 및 순수 유전알고리즘과 비교하였다. 가장 큰 규모의 문제에 대해 그들에 비해 트랜스 포터 수는 각각 40% 및 34%, 총작업 소요 시간은 27% 및 17% 감소시켰다.

네트워크기반 병렬 유전자 알고리즘을 이용한 중앙집중형 동적부하균등기법의 성능향상 (Performance Improvement of Centralized Dynamic Load-Balancing Method by Using Network Based Parallel Genetic Algorithm)

  • 송봉기;성길영;우종호
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.165-171
    • /
    • 2005
  • 본 논문에서는 중앙집중형 동적부하균등을 효율적으로 처리하기 위하여 네트워크기반 병렬 유전자 알고리즘을 이용하였다. 기존의 유전자 알고리즘을 적용한 경우와는 달리 클라이언트들에서 최적작업 할당의 탐색을 분산처리하여 중앙 스케줄러의 성능을 향상시킬 수 있었다. 최적해의 수렴속도를 향상시키기 위해 선택연산은 룰렛휠 선택과 엘리트 보존전략을 함께 사용하였고, 염색체 인코딩은 슬라이딩윈도우기법을 이용하였으며 교차연산은 주기교차방법을 이용하였다. 부하균등기법의 유연성 변화에 따른 중앙 스케줄러의 성능을 모의실험한 결과 기존의 방법보다 성능이 향상됨을 확인하였다.

부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계 (Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems)

  • 이유수;황순규;안종갑
    • 수산해양기술연구
    • /
    • 제58권4호
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems

  • Pongcharoen, Pupong;Khadwilard, Aphirak;Hicks, Christian
    • Industrial Engineering and Management Systems
    • /
    • 제7권3호
    • /
    • pp.204-213
    • /
    • 2008
  • Companies that produce capital goods need to schedule the production of products that have complex product structures with components that require many operations on different machines. A feasible schedule must satisfy operation and assembly precedence constraints. It is also important to avoid deadlock situations. In this paper a Genetic Algorithm (GA) has been developed that includes a new repair process that rectifies infeasible schedules that are produced during the evolution process. The algorithm was designed to minimise the combination of earliness and tardiness penalties and took into account finite capacity constraints. Three different sized problems were obtained from a collaborating capital goods company. A design of experimental approach was used to systematically identify that the best genetic operators and GA parameters for each size of problem.

The Application of a Genetic Algorithm with a Chromosome Limites Life for the Distribution System Loss Minimization Re-Configuration Problem

  • 최대섭
    • 조명전기설비학회논문지
    • /
    • 제21권1호
    • /
    • pp.111-117
    • /
    • 2007
  • This paper presents a new approach to evaluate reliability indices of electric distribution systems using genetic Algorithm (GA). The use of reliability evaluation is an important aspect of distribution system planning and operation to adjust the reliability level of each area. In this paper, the reliability model is based on the optimal load transforming problem to minimize load generated load point outage in each sub-section. This approach is one of the most difficult procedures and become combination problems. A new approach using GA was developed for this problem. GA is a general purpose optimization technique based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. Test results for the model system with 24 nodes 29 branches are reported in the paper.

배전계통에서 손실 최소화를 위한 유전자 알고리즘의 적용 (Application of Genetic Algorithm for Loss Minimization in Distribution Systems)

  • 전영재;김훈;이승윤;손학식;박성옥;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.156-158
    • /
    • 2000
  • This paper presents a efficient algorithm for loss reduction of distribution system by automatic sectionalizing switch operation in distribution systems of radial type. To apply genetic algorithm to reconfiguration of distribution system, in this paper we propose the string type and efficient reconfiguration procedure. We also discuss the more elaborate search techniques of solution space as well as the simple genetic algorithm. The experimental results show that the proposed genetic algorithm have the ability to search a good solution.

  • PDF

전통적인 Job Shop 일정계획을 위한 혼합유전 알고리즘의 개발 (A Development of Hybrid Genetic Algorithms for Classical Job Shop Scheduling)

  • 정종백;김정자;주철민
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.609-612
    • /
    • 2000
  • Job-shop scheduling problem(JSSP) is one of the best-known machine scheduling problems and essentially an ordering problem. A new encoding scheme which always give a feasible schedule is presented, by which a schedule directly corresponds to an assigned-operation ordering string. It is initialized with G&T algorithm and improved using the developed genetic operator; APMX or BPMX crossover operator and mutation operator. and the problem of infeasibility in genetic generation is naturally overcome. Within the framework of the newly designed genetic algorithm, the NP-hard classical job-shop scheduling problem can be efficiently solved with high quality. Moreover the optimal solutions of the famous benchmarks, the Fisher and Thompson's 10${\times}$10 and 20${\times}$5 problems, are found.

  • PDF

유전알고리즘을 이용한 사족 보행로봇의 인간친화동작 구현 (The Implementation of Human-Interactive Motions for a Quadruped Robot Using Genetic Algorithm)

  • 공정식;이인구;이보희
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.665-672
    • /
    • 2002
  • This paper deals with the human-interactive actions of a quadruped robot by using Genetic Algorithm. In case we have to work out the designed plan under the special environments, our robot will be required to have walking capability, and patterns with legs, which are designed like gaits of insect, dog and human. Our quadruped robot (called SERO) is capable of not only the basic actions operated with sensors and actuators but also the various advanced actions including walking trajectories, which are generated by Genetic Algorithm. In this paper, the body and the controller structures are proposed and kinematics analysis are performed. All of the suggested motions of SERO are generated by PC simulation and implemented in real environment successfully.

신경회로망과 유전자 알고리즘을 이용한 복합재료의 최적설계에 관한 연구 (A Study on Optimal Design of Composite Materials using Neural Networks and Genetic Algorithms)

  • 김민철;주원식;장득열;조석수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.501-507
    • /
    • 1997
  • Composite material has very excellent mechanical properties including tensile stress and specific strength. Especially impact loads may be expected in many of the engineering applications of it. The suitability of composite material for such applications is determined not only by the usual paramenters, but its impactor energy-absorbing properties. Composite material under impact load has poor mechanical behavior and so needs tailoring its structure. Genetic algorithms(GA) is probabilistic optimization technique by principle of natural genetics and natural selection and neural networks(NN) is useful for prediction operation on the basis of learned data. Therefore, This study presents optimization techniques on the basis of genetic algorithms and neural networks to minimum stiffness design of laminated composite material.

  • PDF

Genetic Algorithm을 활용한 Heat Sink 최적 설계 (Heat Sink Design Optimization using Genetic Algorithm)

  • 김원곤
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.500-509
    • /
    • 2015
  • This paper presents the single objective design optimization of plate-fin heat sink equipped with fan cooling system using Genetic Algorithm. The proper heat sink and fan model are selected based on the previous studies. And the thermal resistance of heat sinks and fan efficiency during operation are calculated according to specific design parameters. The objective function is combination of thermal resistance and fan efficiency which have been taken to measure the performance of the heat sink. And Decision making procedure is suggested considering life time of semiconductor and Fan Operating cost. And also Analytical Model used for optimization is validated by Fluent, Ansys 13.0 and this model give a quite reasonable and reliable design.

  • PDF