• Title/Summary/Keyword: Genetic Marker

Search Result 1,073, Processing Time 0.028 seconds

An AFLP-based Linkage Map of Japanese Red Pine (Pinus densiflora) Using Haploid DNA Samples of Megagametophytes from a Single Maternal Tree

  • Kim, Yong-Yul;Choi, Hyung-Soon;Kang, Bum-Yong
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.201-209
    • /
    • 2005
  • We have constructed an AFLP-based linkage map of Japanese red pine (Pinus densiflora Siebold et Zucc.) using haploid DNA samples of 96 megagametophytes from a single maternal tree, selection clone Kyungbuk 4. Twenty-eight primer pairs generated a total of 5,780 AFLP fragments. Five hundreds and thirteen fragments were verified as genetic markers with two alleles by their Mendelian segregation. At the linkage criteria LOD 4.0 and maximum recombination fraction 0.25(${\theta}$), a total of 152 markers constituted 25 framework maps for 19 major linkage groups. The maps spanned a total length of 2,341 cM with an average framework marker spacing of 18.4 cM. The estimated genome size was 2,662 cM. With an assumption of equal marker density, 82.2% of the estimated genome would be within 10 cM of one of the 230 linked markers, and 68.1% would be within 10 cM of one of the 152 framework markers. We evaluated map completeness in terms of LOD value, marker density, genome length, and map coverage. The resulting map will provide crucial information for future genomic studies of the Japanese red pine, in particular for QTL mapping of economically important breeding target traits.

Diversity and Inheritance of AFLP Markers in Wild and Cultivated Soybeans (AFLP marker를 이용한 콩의 유전적 다양성과 유전분리 분석)

  • 김용호;윤홍태
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • Genetic variation is the basis of crop improvement. Limited genetic diversity in a crop species may restrict the amount of genetic improvement that can be achieved through plant breeding. Soybean is one of the world's most important crops. A potential source of genetic variability for the cultivated soybean is the wild species G. soja Sieb. & Zucc. Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique, which can detect a 10-fold greater nubmer of loci than other DNA marker analysis. Twenty cultivated soybeans and two-hundred wild soybeans were used to determine genetic vatiations by AFLPs and evaluate the usefulness of AFLPs as DNA markers. Six-hundred and ten fragments were detected with an average of 56 AFLP fragments produced per primer in a total of 11 AFLP primer pairs. The number of polymorphic loci detected per primer ranged from 7 to 20 and the polymorphism was greater in wild than in cultivated soybean. F$_2$ segregation analysis of four AFLP fragments in combination of Hwaeomputkong ${\times}$ PI 417479 indicated that they segregate as stable Mendelian loci with 3 : 1. This results strongly suggest that the AFLP analysis is a good technique for the detection of genetic polymorphism in a wide plant species.

Second-trimester fetal genetic ultrasonography to detect chromosomal abnormalities

  • Hong, Seong-Yeon
    • Journal of Genetic Medicine
    • /
    • v.11 no.2
    • /
    • pp.49-55
    • /
    • 2014
  • Genetic ultrasonography refers to the evaluation of risk of chromosomal abnormalities via various soft sonographic markers. Although the maternal serum test is the primary screening method for chromosomal abnormalities, genetic ultrasonography is also widely used and can help increase detection rates. To date, many soft markers, including choroid plexus cysts, echogenic intracardiac foci, mild ventriculomegaly, nuchal fold thickening, echogenic bowel, mild pyelectasis, short femur and humerus length, and absent or hypoplastic nasal bone, have been reported. An aberrant right subclavian artery was the most novel soft marker introduced. Because these soft markers involve diverse relative risks of chromosomal abnormalities, it is difficult to apply them to clinical practice. To optimize the efficacy of genetic ultrasonography, it is important to understand the precise relative risks of chromosomal abnormalities innumerous soft markers and integrate these risks with each other and the results of maternal serum screening.

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Mannose-Based Selection with Phosphomannose-Isomerase (PMI) Gene as a Positive Selectable Marker for Rice Genetic Transformation

  • Penna, Suprasanna;Ramaswamy, Manjunatha Benakanare;Anant., Bapat Vishvas.
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.233-236
    • /
    • 2008
  • A positive selectable marker system was adapted for transformation of mature embryo-derived calli of Indica rice (Oryza sativa L.) utilizing the PMI gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate. The transformed cells grew on medium supplemented with 3% mannose as carbon source and calli were selected on media containing various concentrations of mannose. Molecular analyses showed that the transformed plants contained the PMI gene. The results indicate that the mannose selection system can be used for Agrobacterium-mediated transformation of mature embryo in rice to substitute the use of conventional selectable markers in genetic transformation.

  • PDF

Genetic Diversity Analysis of the Cheju Horse Using Random Amplified Polymorphic DNAs (PCR-RAPD를 이용한 제주말의 유전적 다양성분석)

  • Cho, Byung-Wook;Lee, Kil-Wang
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.521-524
    • /
    • 2004
  • This experiment was carried out to analyze genetic characteristics and to develop the breed specific DNA marker for Cheju-native horse. If this marker contains high repetitive sequences, it is possible to convert a RAPD marker of interest into a single-locus PCR marker called a sequence characterized amplified region(SCAR). Twenty six Cheju-native horse and Fifty thoroughbred genomic DNA were pooled and PCR. were accomplished using 800 random primers. Comparing the pooled DNA from Cheju-native horse and thoroughbred, we found 9 primers which identified markers present in the pooled DNA from breed but absent in the other breed. Among 9 random primers, 6 primers were thoroughbred specific and 3 primers were Cheju-native horse specific. Testing individual horse revealed that 5 marker showed the similar band pattern between Cheju-native horse and Thoroughbred. However, 4 marker were wholly absent in breed while present in the other breed. UBC $126_{3500bp}$, UBC $162_{500bp}$, and UBC $244_{1200bp}$ was detected only Thoroughbred and UBC $562_{560bp}$was detected Cheju-native horse, respectively. After determining of the cloned breed-specific fragment sequence, we designed the SCAR-primers and carried out PCR. Compared to random primer, RAPD-SCAR primer didn't show significantly higher specific band. However, RAPD analysis is useful for genetic characterization of Cheju-native horse.

Genetic Diversity of Korean Barley (Hordeum vulgare L.) Varieties Using Microsatellite Markers (Microsatellite 마커를 이용한 한국 보리 품종의 유전적 다양성)

  • Kwon, Yong-Sham;Hong, Jee-Hwa;Choi, Keun-Jin
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.322-329
    • /
    • 2011
  • Microsatellite markers were utilized to investigate genetic diversity among 70 Korean barley varieties (Hordeum vulgare). Ninety nine microsatellite primer pairs were screened for 9 varieties. Twenty primer pairs showed highly polymorphic. The relationship between markers genotypes and 70 varieties was analyzed. A total of 124 polymorphic amplified fragments were obtained by using 20 microsatellite markers. Two to nine SSR alleles were detected for each locus with an average of 6.2 alleles per locus. Average polymorphism information content (PIC) was 0.734, ranging from 0.498 to 0.882. A total of 124 marker loci were used to calculate Jaccard's distance coefficients for cluster analysis using UPGMA. Clustering group was divided 2 groups corresponding to 2-rowed and 6-rowed barley varieties. The phenogram was discriminated all varieties by markers genotypes. These markers may be used wide range of practical application in variety identification and genetic purity assessment of barley.

Utilization of DNA Marker-Assisted Selection in Korean Native Animals

  • Yeo, Jong-sou;Kim, Jae-Woo;Chang, Tea-Kyung;Pake, Young-Ae;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • The recent progress od DNA technologies including DNA fingerprinting (DFP) and random amplified DNA polymorphism (RAPD) analysis make it possible to identify the specific genetic trits of animals and to analyze the genetic diversity and relatedness between or withinspecies or populations. Using those techniquse, some efforts to identify and develop the specific DNA markers based on DNA polymorphism, which are related with economic traits for Korean native animals, Hanwoo(Korean native cattle),Korean native pig and Korean native chicken, have been made in Korea for recent a few years. The developed specific DNA markers successfully characterize the Korean native animals as the unique Korean genetic sources, distinctively from other imported breeds. Some of these DNA markers have been related to some important economic traits for domestic animals, for example, growth rate and marbling for Honwoo, growth rate and back fat thinkness fornative pig, and growth rate, agg weight and agg productivity for native chicken. This means that those markers can be used in important marker-assised selection (MAS) of Korean native domestic animals and further contribute to genetically improve and breed them.

  • PDF

DNA Fingerprinting of Rice Cultivars using AFLP and RAPD Markers

  • Cho, Young-Chan;Shin, Young-Seop;Ahn, Sang-Nag;Gleen B. Gregorio;Kang, Kyong-Ho;Darshan Brar;Moon, Huhn-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 1999
  • This experiment was conducted to evaluate genetic variation in 48 rice accessions (Oryza sativa L.) using AFLP and RAPD markers. For AFLP, a total of 928 bands were generated with 11 primer combinations and 327 bands (35.2%) of them were polymorphic among 48 accessions. In RAPD analyses using 22 random primers 145 bands were produced, and 121 (83.4%) were polymorphic among 48 accessions. Each accession revealed a distinct fingerprint by two DNA marker systems. Cluster analysis using AFLP-based genetic similarity tended to classify rice cultivars into different groups corresponding to their varietal types and breeding pedigrees, but not using RAPD-based genetic similarity. The AFLP marker system was more sensitive than RAPD in fingerprinting of rice cultivars with narrow genetic diversity.

  • PDF

Pre- and Post-Treatment Imaging of Primary Central Nervous System Tumors in the Molecular and Genetic Era

  • Sung Soo Ahn;Soonmee Cha
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1858-1874
    • /
    • 2021
  • Recent advances in the molecular and genetic characterization of central nervous system (CNS) tumors have ushered in a new era of tumor classification, diagnosis, and prognostic assessment. In this emerging and rapidly evolving molecular genetic era, imaging plays a critical role in the preoperative diagnosis and surgical planning, molecular marker prediction, targeted treatment planning, and post-therapy assessment of CNS tumors. This review provides an overview of the current imaging methods relevant to the molecular genetic classification of CNS tumors. Specifically, we focused on 1) the correlates between imaging features and specific molecular genetic markers and 2) the post-therapy imaging used for therapeutic assessment.