• 제목/요약/키워드: Genetic Map

검색결과 296건 처리시간 0.026초

Identification and characterization of QTLs and QTL interactions for Macro- and Micro-elements in rice (Oryza sativa L.) grain

  • Qin, Yang;Kim, Suk-Man;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • 제35권4호
    • /
    • pp.257-263
    • /
    • 2008
  • Improvement of the macro- and micro-elements density of rice (Oryza sativa L.) is gradually becoming a new breeding objective. In this study, the genomic regions associated with potassium, calcium, magnesium and iron content in rice grain were identified and characterized by using a doubled haploid (DH) population. Fifty-six simple sequence repeat (SSR) and one hundred and twelve sequence tagged site (STS) markers were selected to construct the genetic linkage map of the DH population with a full length of 1808.3cM scanning 12 rice chromosomes. Quantitative trait loci (QTLs) were detected, and QTL effects and QTL interactions were calculated for five traits related to macro- and micro-elements in the DH population from a cross between 'Samgang' (Tongil) and 'Nagdong' (Japonica). Twelve QTLs were located on five chromosomes, consisting of two QTLs for potassium, three QTLs for calcium, two QTLs for magnesium, one QTL for iron content and four QTLs for the ratio of magnesium to potassium (Mg/K). Among them, qca1.1 was detected on chromosome 1 with an LOD value of 8.58 for calcium content. It explained 27% of phenotype variations with increasing effects from 'Samgang' allele. Furthermore, fifteen epistatic combinations with significant interactions were observed on ten chromosomes for five traits, which totally accounted for 4.19% to 12.72% of phenotype variations. The screening of relatively accurate QTLs will contribute to increase the efficiency of marker-assisted selection (MAS), and to accelerate the establishment of near-isogenic lines (NILs) and QTL pyramiding.

Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

  • Kim, Sun Ah;Yoo, Yun Joo
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.196-204
    • /
    • 2016
  • Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine), MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP) markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

포도 유전체 연구현황 및 전망 (Current status and prospects of genomics and bioinformatics in grapes)

  • 허윤영;정성민;윤해근
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.298-311
    • /
    • 2015
  • 포도는 전 세계적으로 가장 많이 재배되는 과수 작물 중의 하나로서 재배과정에서 많은 병해충이나 기상재해와 같은 스트레스에 직면한다. 과실의 고품질과 더불어 병충해 저항성인 품종 또는 내재해성 품종을 육성하는 것은 포도 생산에서 매우 중요한 과정이다. 고전적인 교배 육종을 이용한 신품종의 개발은 포장을 관리하는 데에 많은 노동력과 비용이 요구되며 오랜 시간이 소요되는 단점이 있다. 유용형질을 지닌 새로운 품종의 개발에 이용할 분자육종기술은 포도 육종프로램에서 전통적인 교배육종효율을 증진시킬 수 있는 매우 유용한 기술로 여겨진다. 포도의 유전체 해독을 완성함으로써 신품종육성에 활용될 유용유전자를 대량으로 발굴할 수 있고, 기능을 분석하는데 큰 도움을 주고 있다. 포도의 비교유전체, 전사체, 후성유전체, 유전체에 근거한 유전자 발굴, 분자마커 개발 등의 연구는 과실의 품질, 병해와 스트레스에 대한 저항성 기작을 구명하는데 중요한 단서를 제공하고 포도 육종에 유용하게 활용될 것이다.

Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of Various Korean Cultivars

  • Roy, Swapan Kumar;Kwon, Soo-Jeong;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Moon, Young-Ja;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제62권1호
    • /
    • pp.40-50
    • /
    • 2017
  • Seed storage proteins are used as carbon and nitrogen sources for the nutritional improvement of seeds. Since the composition of proteins from the Korean cultivars of proso millet is unknown, this study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from proso millet seeds of various cultivars were investigated using proteomic techniques such as 2-D electrophoresis coupled with mass fingerprinting; 1152 (differentially expressed) protein spots were detected on the 2-D gels. Among them, 26 reproducible protein spots were analyzed using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Out of the 26 proteins, 2 proteins were upregulated in all the millet cultivars, while 13 proteins were upregulated and 11 proteins were downregulated in 2 cultivars. Abundance of most of the identified protein species associated with polysaccharide and starch metabolism, transcription, and pathogenesis was significantly enhanced, while that of other protein species involved in glycolysis, stress response, and transduction was severely reduced. Taken together, the results suggest that the differential expression of the proteins from the four millet cultivars may be cultivar-specific. By conducting a proteomic investigation of millet seeds from different cultivars, we sought to better understand the functional categorization of individual proteins on the basis of their molecular functions. We believe that the identified proteins may help in investigating genetic variations in millet cultivars.

Functional PstI/RsaI Polymorphisms in the CYP2E1 Gene among South Indian Populations

  • Lakkakula, Saikrishna;Maram, Rajasekhar;Munirajan, Arasambattu Kannan;Pathapati, Ram Mohan;Visweswara, Subrahmanyam Bhattaram;Lakkakula, Bhaskar V.K.S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.179-182
    • /
    • 2013
  • Human cytochrome P4502E1 (CYP2E1) is a well-conserved xenobiotic-metabolizing enzyme expressed in liver, kidney, nasal mucosa, brain, lung, and other tissues. CYP2E1 is inducible by ethanol, acetone, and other low-molecular weight substrates and may mediate development of chemically-mediated cancers. CYP2E1 polymorphisms alter the transcriptional activity of the gene. This study was conducted in order to investigate the allele frequency variation in different populations of Andhra Pradesh. Two hundred and twelve subjects belonging to six populations were studied. Genotype and allele frequency were assessed through TaqMan allelic discrimination (rs6413419) and polymerase chain reaction-sequencing (-1295G>C and -1055C>T) after DNA isolation from peripheral leukocytes. The data were compared with other available world populations. The SNP rs6413419 is monomorphic in the present study, -1295G>C and -1055C>T are less polymorphic and followed Hardy-Weinberg equilibrium in all the populations studied. The -1295G>C and -1055C>T frequencies were similar and acted as surrogates in all the populations. Analysis of HapMap populations data revealed no significant LD between these markers in all the populations. Low frequency of $CYP2E1^*c2$ could be useful in the understanding of south Indian population gene composition, alcohol metabolism, and alcoholic liver disease development. However, screening of additional populations and further association studies are necessary. The heterogeneity of Indian population as evidenced by the different distribution of $CYP2E1^*c2$ may help in understanding the population genetic and evolutionary aspects of this gene.

Mapping QTL for ratooning ability in advanced backcross lines from an Oryza sativa × O. rufipogon cross

  • Ji, Shi-Dong;Luo, Xiao;Ahn, Sang-Nag
    • 농업과학연구
    • /
    • 제41권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Ratooning ability is one of the major different traits from perennial to cultivated rice and annual type. We developed a set of 126 introgression lines derived from a cross between Hwayeong and W1944 (O. rufipogon) to gain an insight into the genetic factors underlying differences between common wild rice and cultivated rice. One IL, CR6 among the 126 ILs of $BC_3F_4$ showed a significant difference in rationing ability compared with Hwayeong. To further characterize the rationing ability, CR6 was selected and crossed to Hwayeong to produce three secondary populations, $BC_4F_2$, $BC_4F_3$ and $BC_5F_2$. In the Hwayeong background, the W1944 allele was associated with an increase in rationing ability. QTL analysis showed that the qRAT5 for rationing ability was linked to RM194 ($R^2$=6.6%, 19.6%, and 44.5% in the $BC_4F_2$, $BC_5F_2$, and $BC_5F_3$, respectively). The putative qRAT5 was also tightly linked to QTLs for spikelets per panicle and grain weight indicating that this region harbors a QTL cluster related to domestication. To our knowledge, this is the first report to map the major QTL for ratooning ability in rice. The SSR markers linked to qRAT5 would be useful in marker-assisted selection for breeding lines with enhanced ratooning ability.

위치별 산란특성을 반영한 측정기반 얼굴 렌더링 (Measurement-based Face Rendering reflecting Positional Scattering Properties)

  • 박선용;오경수
    • 한국게임학회 논문지
    • /
    • 제9권5호
    • /
    • pp.137-144
    • /
    • 2009
  • 이 논문은 피하산란의 정도가 다를 것으로 예상되는 얼굴의 6개의 부위를 촬영하여 각각의 산란특성을 추출하고 렌더링에 반영하여 얼굴의 사실감 있는 표현이 가능한 방법을 제안한다. 각 부위별 산란이미지는 프로젝터로부터 피부에 입사된 단위광선이 내부 산란을 거쳐 밖으로 드러나는 모양을 여러 노출로 촬영하여 HDR 이미지로 합성하고, 비선형 최소제곱합의 해법 중 Sequential Quadratic Programming을 이용하여 광선의 입사지점을 지나는 단면이 이루는 곡선에 '가우스 함수의 선형결합'을 적합한다. 가우스 함수는 산란곡선을 잘 근사하면서 필터로서 적용이 쉬운 장점을 가진다. 우리는 최소제곱합의 해가 지역 해에 빠지는 않도록 유전알고리듬을 이용해 초기 값을 설정한다. 근사된 식의 각 가우스 항은 얼굴에 입사되는 복사조도를 렌더링한 텍스처에 가우스 필터로 적용되어 피하산란효과를 표현. 이 논문에서는 최대 12회의 가우스 필터링을 효율적으로 처리하기 위해 쿠다의 병렬처리능력를 활용하였다.

  • PDF

인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작 (Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse)

  • 이희경;차상훈
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.

DNA Repair Gene Polymorphisms at XRCC1, XRCC3, XPD, and OGG1 Loci in the Hyderabad Population of India

  • Parine, Narasimha Reddy;Pathan, Akbar Ali Khan;Bobbarala, Varaprasad;Abduljaleel, Zainularifeen;Khan, Wajahatullah;Alanazi, Mohammed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6469-6474
    • /
    • 2012
  • Background: DNA repair is one of the crucial defense mechanism against mutagenic exposure. Inherited SNPs of DNA repair genes may contribute to variation in DNA repair capacity and susceptibility to cancer. Due to the presence of these variants, inter-individual and ethnic differences in DNA repair capacity have been established in various populations. India harbors enormous genetic and cultural diversity. Materials and Methods: In the present study we aimed to determine the genotypes and allele frequencies of XRCC1 Arg399Gln (rs25487), XRCC3 Thr241Met (rs861539), XPD Lys751Gln (rs13181), and OGG1 Ser326Cys (rs1052133) gene polymorphisms in 186 healthy individuals residing in the Hyderabad region of India and to compare them with HapMap and other populations. Results and Conclusions: The genotype and allele frequency distribution at the four DNA repair gene loci among Hyderabad population of India revealed a characteristic pattern. Comparison of these gene polymorphisms with other populations revealed a distinctiveness of Hyderabad population from the Deccan region of India. To the best of our knowledge, this is the first report of such DNA repair gene polymorphisms in the Deccan Indian population.

Comparative proteome analysis of seeds of proso millet (Panicum miliaceum) cultivars

  • Roy, Swapan Kumar;Kwon, Soo Jeong;Park, Hyeong-Jun;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.120-120
    • /
    • 2017
  • Since the composition of proteins from the Korean cultivars of Proso millet is unknown; thereby, the present study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from the millet seeds of various cultivars, were investigated using proteomic techniques as 2D electrophoresis coupled with mass fingerprinting. The 1152 (differentially expressed) proteins were detected on 2-D gel. Among them, 26 reproducible protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Out of 26 proteins, 2 proteins were up-regulated towards all cultivars of millet, while 7 proteins were up-regulated and 13 proteins were down-regulated against only one cultivar. However, abundance in most identified protein species, associated with metabolism, transcription and transcription was significantly enhanced, while that of another protein species involved in polysaccharide metabolism, stress response and pathogenesis were severely reduced. Taken together, the results observed from the study suggest that the differential expression of proteins from the four cultivars of millet may be cultivar-specific. Taken together, a proteomic investigation of millet seeds from different cultivars, we sought to better understand the genetic variation of millet cultivars representing the future millet research, and the functional categorization of individual proteins on the basis of their molecular function.

  • PDF