• Title/Summary/Keyword: Genetic Factor

Search Result 1,178, Processing Time 0.038 seconds

Factor Analysis of Genetic Evaluations For Type Traits of Canadian Holstein Sires and Cows

  • Ali, A.K.;Koots, K.R.;Burnside, E.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.463-469
    • /
    • 1998
  • Factor analysis was applied as a multivariate statistical technique to official genetic evaluations of type classification traits for 1,265,785 Holstein cows and 10,321 sires computed from data collected between August 1982 and June 1994 in Canada. Type traits included eighteen linear descriptive traits and eight major score card traits. Principal components of the factor analysis showed that only five factors explain the information of the genetic value of linear descriptive traits for both cows and sires. Factor 1 included traits related to mammary system, like texture, median suspensory, fore attachment, fore teat placement and rear attachment height and width. Factor 2 described stature, size, chest width and pin width. These two factors had a similar pattern for both cows and sires. In constrast, Factor 3 for cows involved only bone-quality, while in addition for sires, Factor 3 included foot angle, rear legs desirability and legs set. Factor 4 for cows related to foot angle, set of rear leg and leg desirability, while Factor 4 related to loin strenth and pin setting for sires. Finally, Factor 5 included loin strength and pin setting for cows and described only pin setting for sires. Two factors only were required to describe score card traits of cows and sires. Factor 1 related to final score, feet and legs, udder traits, mammary system and dairy character, while frame/capacity and rump were described by Factor 2. Communality estimates which determine the proportion of variance of a type trait that is shared with other type traits via the common factor variant were high, the highest ${\geq}$ 80% for final score, stature, size and chest width. Pin width and pin desirability had the lowest communality, 56% and 37%. Results indicated shifts in emphasis over the twelve-year period away from udder traits and dairy character, and towards size, scale and width traits. A new system that computes fmal score from type components has been initiated.

PThe Robust Control System Design using Intelligent Hybrid Self-Tuning Method (지능형 하이브리드 자기 동조 기법을 이용한 강건 제어기 설계)

  • 권혁창;하상형;서재용;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.325-329
    • /
    • 2003
  • This paper discuss the method of the system's efficient control using a Intelligent hybrid algorithm in nonlinear dynamics systems. Existing neural network and genetic algorithm for the control of non-linear systems work well in static states. but it be not particularly good in changeable states and must re-learn for the control of the system in the changed state. This time spend a lot of time. For the solution of this problem we suggest the intelligent hybrid self-tuning controller. it includes neural network, genetic algorithm and immune system. it is based on neural network, and immune system and genetic algorithm are added against a changed factor. We will call a change factor an antigen. When an antigen broke out, immune system come into action and genetic algorithm search an antibody. So the system is controled more stably and rapidly. Moreover, The Genetic algorithm use the memory address of the immune bank as a genetic factor. So it brings an advantage which the realization of a hardware easy.

  • PDF

Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm

  • Li, Shouju;Shangguan, Zichang;Duan, Hongxia;Liu, Yingxi;Luan, Maotian
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.85-96
    • /
    • 2009
  • The radius and coordinate of sliding circle are taken as searching variables in slope stability analysis. Genetic algorithm is applied for searching for critical factor of safety. In order to search for critical factor of safety in slope stability analysis efficiently and in a robust manner, some improvements for simple genetic algorithm are proposed. Taking the advantages of efficiency of neighbor-search of the simulated annealing and the robustness of genetic algorithm, a hybrid optimization method is presented. The numerical computation shows that the procedure can determine the minimal factor of safety and be applied to slopes with any geometry, layering, pore pressure and external load distribution. The comparisons demonstrate that the genetic algorithm provides a same solution when compared with elasto-plastic finite element program.

Ginseng saponins and the treatment of osteoporosis: mini literature review

  • Siddiqi, Muhammad Hanif;Siddiqi, Muhammad Zubair;Ahn, Sungeun;Kang, Sera;Kim, Yeon-Ju;Sathishkumar, Natarajan;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.261-268
    • /
    • 2013
  • The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.

Association between Genetic Variation in the Human Factor Ⅶ Gene and Essential Hypertension in Korean Population

  • Shin, Jung-Hee;Kang, Byung-Yong;Lee, Kyung-Ho;Lee, Chung-Choo;Kim, Ki-Tae
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.106-112
    • /
    • 2001
  • In view of the effect of factor Ⅶ as a risk factor for essential hypertension, we investigated the length (I/D) polymorphism at position 323 promoter region and exon 8-Msp I RFLP of the human factor Ⅶ gene in the Korean patients with essential hypertension and normal controls. There were no significant differences in the allele, genotype and haplotype frequencies of these polymorphisms between normotensive and essential hypertensive subjects. The significant linkage disequilibrium was however, detected between two polymorphic sites. The Msp I RFLP and I/D polymorphism were also significantly associated with plasma triglyceride (TG) levels. Therefore, our results suggest that the significant association between two genetic variations in the human factor Ⅶ gene and plasma TG level may reflect the potential role of human factor Ⅶ gene as one of the genetic components for cardiovascular risk.

  • PDF

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.

The Role of Genetic Diagnosis in Hemophilia A

  • Lee, Ja Young
    • Journal of Interdisciplinary Genomics
    • /
    • v.4 no.1
    • /
    • pp.15-18
    • /
    • 2022
  • Hemophilia A is a rare X-linked congenital deficiency of clotting factor VIII (FVIII) that is traditionally diagnosed by measuring FVIII activity. Various mutations of the FVIII gene have been reported and they influence on the FVIII protein structure. A deficiency of or reduction in FVIII protein manifests as spontaneous or induced bleeding depending on the disease severity. Mutations of the FVIII gene provide important information on the severity of disease and inhibitor development. FVIII mutations also affect the discrepant activities found using different FVIII assays. FVIII activity is affected differently depending on the mutation site. Long-range PCR is commonly used to detect intron 22 inversion, the most common mutation in severe hemophilia. However, point mutations are also common in patients with hemophilia, and direct Sanger sequencing and copy number variant analysis are being used to screen for full mutations in the FVIII gene. Advances in molecular genetic methods, such as next-generation sequencing, may enable accurate analysis of mutations in the factor VIII gene, which may be useful in the diagnosis of mild to moderate hemophilia. Genetic analysis is also useful in diagnosing carriers and managing bleeding control. This review discusses the current knowledge about mutations in hemophilia and focuses on the clinical aspects associated with these mutations and the importance of genetic analysis.

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).

Update of genetic susceptibility in patients with Kawasaki disease

  • Yoon, Kyung Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-${\beta}$ signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.