Browse > Article
http://dx.doi.org/10.5142/jgr.2013.37.261

Ginseng saponins and the treatment of osteoporosis: mini literature review  

Siddiqi, Muhammad Hanif (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Siddiqi, Muhammad Zubair (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Ahn, Sungeun (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Kang, Sera (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Kim, Yeon-Ju (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Sathishkumar, Natarajan (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Yang, Dong-Uk (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Yang, Deok-Chun (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.37, no.3, 2013 , pp. 261-268 More about this Journal
Abstract
The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.
Keywords
Panax ginseng; Ginsenosides; Osteoporosis; Receptor activator of nuclear factor kappa-B ligand; Bone morphogenetic protein-2;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Shen Y, Li YQ, Li SP, Ma L, Ding LJ, Ji H. Alleviation of ovariectomy-induced osteoporosis in rats by Panax notoginseng saponins. J Nat Med 2010;64:336-345.   DOI
2 Li XD, Wang JS, Chang B, Chen B, Guo C, Hou GQ,Huang DY, Du SX. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. J Ethnopharmacol 2011;134:268-274.   DOI   ScienceOn
3 Brewer L, Williams D, Moore A. Current and future treatment options in osteoporosis. Eur J Clin Pharmacol 2011;67:321-331.   DOI
4 Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012;361:27-39.   과학기술학회마을   DOI   ScienceOn
5 Huang KC, Williams WM. The pharmacology of Chinese herbs. Boca Raton: CRC Press, 1999.
6 Kwak YS, Park JD, Yang JW. Present and its prospect of red ginseng efficacy research. Food Ind Nutr 2003;8:30-37.
7 Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC. Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from kimchi. J Ginseng Res 2010; 34:288-295.   과학기술학회마을   DOI   ScienceOn
8 Shin HY, Jeong HJ, An HJ, Hong SH, Um JY, Shin TY, Kwon SJ, Jee SY, Seo BI, Shin SS et al. The effect of Panax ginseng on forced immobility time & immune function in mice. Indian J Med Res 2006;124:199-206.
9 Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 2007;59:589-601.   DOI   ScienceOn
10 Polan ML, Hochberg RB, Trant AS, Wuh HC. Estrogen bioassay of ginseng extract and ArginMax, a nutritional supplement for the enhancement of female sexual function. J Womens Health (Larchmt) 2004;13:427-430.   DOI   ScienceOn
11 Kim NH, Lee HM, Choi CH, Lim SK. Clinical effect of Korean red ginseng on osteoporosis. J Ginseng Res 1998;22:114-121.   과학기술학회마을
12 Kim DY, Park KH, Jung MS, Huang B, Yuan HD, Quan HY, Chung SH. Ginsenoside Rh2(S) induces differentiation and mineralization of MC3T3-E1 cells through activation of the PKD/AMPK signaling pathways. Int J Mol Med 2011;28:753-759.
13 Liu J, Shiono J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. 20(R)-ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg Med Chem Lett 2009;19:3320-3323.   DOI   ScienceOn
14 Cheng B, Li J, Du J, Lv X, Weng L, Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-$\kappa$B and MAPKs pathways. Food Chem Toxicol 2012;50:1610-1615.   DOI   ScienceOn
15 Kim DY, Park YG, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rd stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells by activating AMP-activated protein kinase via the BMP-2 signaling pathway. Fitoterapia 2012;83:215-222.   DOI   ScienceOn
16 Kim DY, Jung MS, Park YG, Yuan HD, Quan HY, Chung SH. Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways. BMB Rep 2011;44:659-664.   DOI   ScienceOn
17 He L, Lee J, Jang JH, Lee SH, Nan MH, Oh BC, Lee SG, Kim HH, Soung NK, Ahn JS et al. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-$\kappa$B, NFATc1 and c-Fos. Bone 2012;50:1207-1213.   DOI   ScienceOn
18 Li XD, Chang B, Chen B, Liu ZY, Liu DX, Wang JS, Hou GQ, Huang DY, Du SX. Panax notoginseng saponins potentiate osteogenesis of bone marrow stromal cells by modulating gap junction intercellular communication activities. Cell Physiol Biochem 2010;26:1081-1092.   DOI   ScienceOn
19 Li XD, Liu ZY, Chang B, Liu DX, Chen B, Guo C, Wang YG, Xu JK, Huang DY, Du SX. Panax notoginseng saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK and P38 MAPK signaling pathways. Cell Physiol Biochem 2011;28:367-376.   DOI   ScienceOn
20 Gong YS, Chen J, Zhang QZ, Zhang JT. Effect of 17beta-oestradiol and ginsenoside on osteoporosis in ovariectomised rats. J Asian Nat Prod Res 2006;8:649-656.   DOI   ScienceOn
21 Monroe DG, Hawse JR, Subramaniam M, Spelsberg TC. Retinoblastoma binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation. BMC Musculoskelet Disord 2010;11:104.   DOI   ScienceOn
22 Kim KS, Pyo SK, Sohn EH. Immunomodulation of NK cell activity by red ginseng acidic polysaccharide (RGAP) in ovariectomized rats. J Ginseng Res 2009;33:99-103.   과학기술학회마을   DOI   ScienceOn
23 Yovel G, Shakhar K, Ben-Eliyahu S. The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells. Gynecol Oncol 2001;81:254-262.   DOI   ScienceOn
24 Kropotov AV, Kolodnyak OL, Koldaev VM. Effects of Siberian ginseng extract and ipriflavone on the development of glucocorticoid-induced osteoporosis. Bull Exp Biol Med 2002;133:252-254.   DOI   ScienceOn
25 Kim HR, Cui Y, Hong SJ, Shin SJ, Kim DS, Kim NM, So SH, Lee SK, Kim EC, Chae SW et al. Effect of ginseng mixture on osteoporosis in ovariectomized rats. Immunopharmacol Immunotoxicol 2008;30:333-345.   DOI   ScienceOn
26 Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389-406.   DOI   ScienceOn
27 Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009;19:1-46.   DOI
28 Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 2007;12:3068-3092   DOI
29 Kogianni G, Noble BS. The biology of osteocytes. Curr Osteoporos Rep 2007;5:81-86.   DOI
30 Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318-3325   DOI   ScienceOn
31 Ng KW. Future developments in osteoporosis therapy. Endocr Metab Immune Disord Drug Targets 2009;9:371-384.   DOI
32 Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994;843:1-129.
33 National Osteoporosis Foundation. Learn about osteoporosis. Available from: http://www.nof.org/node/40.
34 World Health Organization. WHO scientific group on the assessment of osteoporosis at primary health care level. Available from: http://www.who.int/chp/topics/Osteoporosis.pdf.
35 Lau RY, Guo X. A review on current osteoporosis research: with special focus on disuse bone loss. J Osteoporos 2011;2011:293808.
36 Narducci P, Nicolin V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: an in vitro study. Ann Anat 2009;191:349-355.   DOI   ScienceOn
37 Baron R, Neff L, Vignery A. Differentiation and functional characteristics of osteoclasts. Bone 1985;6:414.
38 Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-176.   DOI   ScienceOn
39 Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309-319.   DOI   ScienceOn
40 Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002;20:795-823.   DOI   ScienceOn
41 Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-342   DOI   ScienceOn
42 Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998;95:3597-3602.   DOI   ScienceOn
43 Du J, Cheng B, Zhu X, Ling C. Ginsenoside Rg1, a novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects. J Immunol 2011;187:942-950.   DOI
44 Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004;428:758-763.   DOI   ScienceOn
45 Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001;142:5050-5055.   DOI   ScienceOn
46 Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999;96:3540-3545.   DOI   ScienceOn
47 Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999;13:1015-1024.   DOI   ScienceOn
48 Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007;9 Suppl 1:S1.
49 Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res 2007;313:168-178.   DOI   ScienceOn
50 Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 2010;224:1415-1440.   DOI   ScienceOn
51 Derynck R, Zhang Y. Intracellular signalling: the mad way to do it. Curr Biol 1996;6:1226-1229.   DOI   ScienceOn
52 Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133-146.   DOI   ScienceOn
53 Massague J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 1996;85:947-950.   DOI   ScienceOn
54 Reddi AH. Bone and cartilage differentiation. Curr Opin Genet Dev 1994;4:737-744.   DOI   ScienceOn
55 Berridge M. Cell signaling biology. Available from: http://www.biochemj.org/csb.
56 Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-241.   DOI   ScienceOn
57 Yamashita H, Ten Dijke P, Heldin CH, Miyazono K. Bone morphogenetic protein receptors. Bone 1996;19:569-574.   DOI   ScienceOn
58 Merck. Fosamax (alendronate sodium) tablets and oral solution prescribing information. Whitehouse Station: Merck, 2011.
59 Novartis Pharmaceuticals Corporation. Reclast (zoledronic acid) injection prescribing information. East Hanover: Novartis Pharmaceuticals Corporation, 2011.
60 Wysowski DK. Reports of esophageal cancer with oral bisphosphonate use. N Engl J Med 2009;360:89-90.   DOI   ScienceOn
61 Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364:1002-1008.   DOI   ScienceOn